Pharmacogenetic approach to methotrexate-related toxicity prediction in psoriasis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Methotrexate is a highly effective for psoriasis, but the use of methotrexate may be limited by its adverse effects. Approximately 10–30% of patients treated with methotrexate experience adverse drug reactions, leading to the therapy discontinuation. Patient genetics can play a significant role in the interindividual variability of drug response. There is a growing body of literature on allelic variants of various genes that are assosiated with methotrexate toxicity. Pharmacogenetic studies may establish how patient’s genotype affect the safety of methotrexate. Treatment Data shows that to predict the risk of methotrexate-induced toxicity it is necessary to take into account the interindividual variability in methotrexate pharmacokinetics, which may be determined by the presence of single-nucleotide polymorphisms of genes encoding methotrexate carrier proteins and enzymes of its biotransformation. The activity of transporter proteins affects the drugs in the blood plasma and peripheral tissues, thereby determining its toxicity.

The review was aimed is to summarize the current knowledge on pharmacogenetic polymorphisms that may affect the variability of methotrexate-related toxicity.

Evaluation of such promising candidates for predictors of methotrexate-related toxicity risk could be used in psoriasis treatment personalization.

Full Text

Restricted Access

About the authors

Alexey A. Kubanov

Russian Medical Academy of Continuous Professional Education; State Scientific Centre of Dermatovenereology and Cosmetology

ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990

MD, Dr. Sci. (Med.), Professor

Russian Federation, 2/1, Barrikadnaya st., Moscow, 125993; Moscow

Anastasiia V. Asoskova

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
ORCID iD: 0000-0002-2228-8442
SPIN-code: 5530-9490

Graduate Studen

Russian Federation, 2/1, Barrikadnaya st., Moscow, 125993

Dmitriy A. Sychev

Russian Medical Academy of Continuous Professional Education

ORCID iD: 0000-0002-4496-3680
SPIN-code: 4525-7556

MD, Dr. Sci (Med.), Professor

Russian Federation, 2/1, Barrikadnaya st., Moscow, 125993


  1. Kubanova AA. Federal clinical recommendations. Dermatovenerology 2015: Skin diseases. Sexually transmitted infections. Moscow : Delovoi ehkspress; 2016. 786 p. (In Russ).
  2. Parisi R, Iskandar I, Kontopantelis E, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. doi: 10.1136/bmj.m1590
  3. Global report on psoriasis. I. Psoriasis – epidemiology. [accessed 2021 Febr 25]. World Health Organization; 2016. Available from:;sequence=1
  4. Rubricator of clinical recommendations. (In Russ). Available from:!/schema/866#doc_g
  5. Lebwohl M. A clinician’s paradigm in the treatment of psoriasis. J Am Acad Dermatol. 2005;53(1):59–69. doi: 10.1016/j.jaad.2005.04.031
  6. Chikin VV, Znamenskaya LF, Mineeva AA. Pathogenetic aspects of treatment of patients with psoriasis. Bulletin of Dermatology and Venereology. 2014;5:86–90. (In Russ).
  7. West J, Ogston S, Foerster J. Safety and efficacy of methotrexate in psoriasis: a meta-analysis of published trials. PLoS One. 2016;11(5):e0153740. doi: 10.1371/journal.pone.0153740
  8. Pathirana D, Ormerod AD, Saiag P. European S3-guidelines on the systemic treatment of psoriasis vulgaris. J Eur Acad Dermatol Venereol. 2009;23(Suppl 2):1–70. doi: 10.1111/j.1468-3083.2009.03389.x
  9. Romão V, Lima A, Bernardes M, et al. Three decades of low-dose methotrexate in rheumatoid arthritis: Can we predict toxicity? Immunol Res. 2014;60(2-3):289–310. doi: 10.1007/s12026-014-8564-6
  10. Alarcóan G, Tracy I, Blackburn W. Methotrexate in rheumatoid arthritis. Toxic effects as the major factor in limiting long-term treatment. Arthritis Rheum. 1989;32(6):671–676. doi: 10.1002/anr.1780320603
  11. Levin AA, Gottlieb AB, Au SC. A comparison of psoriasis drug failure rates and reasons for discontinuation in biologics vs conventional systemic therapies. J Drugs Dermatol. 2014;13(7):848–853.
  12. Redenšek S, Dolžan V; Pharmacogenetics of Psoriasis Treatment, An Interdisciplinary Approach to Psoriasis. Anca Chiriac. Intech Open [accessed 2017 July 5]. Available from:
  13. Owen S, Hider S, Martin P, et al. Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharmacogenomics J. 2012;13(3):227–234. doi: 10.1038/tpj.2012.7
  14. Shen S, O’Brien T, Yap LM, et al. The use of methotrexate in dermatology: a review. Australas J Dermatol. 2012;53(1):1–18. doi: 10.1111/j.1440-0960.2011.00839.x
  15. Ray-Jones H, Eyre S, Barton A, Warren R. One SNP at a time: moving beyond GWAS in psoriasis. J Invest Dermatol. 2016;136(3):567–573. doi: 10.1016/j.jid.2015.11.025
  16. Sutherland A, Power R, Rahman P, O’Rielly D. Pharmacogenetics and pharmacogenomics in psoriasis treatment: current challenges and future prospects. Expert Opin Drug Metab Toxicol. 2016;12(8):923–935. doi: 10.1080/17425255.2016.1194394
  17. Seredenin SB. Lectures on pharmacogenetics. Moscow : Meditsinskoe informatsionnoe agentstvo; 2004. 302 p. (In Russ).
  18. Weber WW. Pharmacogenetics. New York : Oxford University Press; 1997. 344 p.
  19. Innocenti F. Pharmacogenomics: methods and protocols (methods in molecular biology). New Jersey : Humana Press; 2005. 311 р.
  20. Sychev DA, Ignatiev IV, Ramenskaya GV, Kukes VG. Clinical pharmacogenetics. Ed. by VG Kukes, NP Bochkov. Moscow: GEOTAR-Media; 2007. 245 p. (In Russ).
  21. Cohen N. Pharmacogenomics and Personalized Medicine. New Jersey : Humana Press; 2008. 513 р.
  22. Yan Q. Pharmacogenomics in Drug Discovery and Development. New Jersey : Humana Press; 2014. 731 р.
  23. Sychev DA, Kukes VG, Gavrisyuk EV, et al. Recommendations for the use of pharmacogenetic testing for the personalization of antiplatelet drug therapy. Vedomosti of the Scientific Center for the Examination of Medical Products. 2012;(1):35–37. (In Russ).
  24. Valdman EA. Problems of implementation of pharmacogenomics achievements. Remedium. 2008;(3):6–9. (In Russ).
  25. Hider S, Morgan C, Bell E, Bruce IN. Will pharmacogenetics allow better prediction of methotrexate toxicity and efficacy in patients with RA? Ann Rheum Dis. 2003;62(6):591–591. doi: 10.1136/ard.62.6.591
  26. Eichelbaum M, Ingelman-Sundberg M, Evans W. Pharmacogenomics and Individualized drug therapy. Annu Rev Med. 2006;57(1):119–137. doi: 10.1146/
  27. Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nature Reviews Drug Discovery. 2010;9(3):215–236. doi: 10.1038/nrd3028
  28. Kotlovsky MY, Pokrovsky AA, Kotlovskaya OS, et al. The SLCO1B1 gene in the aspect of pharmacogenetics. Siberian Medical Review. 2015;(1):5–15. (In Russ).
  29. Whetstine JR, Gifford AJ, Witt T, et al. Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clin Cancer Res. 2001;7(11):3416–3422.
  30. Dervieux T, Furst D, Lein D, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis & Rheumatism. 2004;50(9):2766–2774. doi: 10.1002/art.20460
  31. Ulrich C, Robien K, Sparks R. Pharmacogenetics and folate metabolism – a promising direction. Pharmacogenomics. 2002;3(30):299–313. doi: 10.1517/14622416.3.3.299
  32. Hinken M, Halwachs S, Kneuer C, Honscha W. Subcellular localization and distribution of the reduced folate carrier in normal rat tissues. European Journal of Histochemistry. 2011;55(1):3. doi: 10.4081/ejh.2011.e3
  33. Campalani E, Arenas M, Marinaki A, et al. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127(8):1860–1867. doi: 10.1038/sj.jid.5700808
  34. Chango A, Emery-Fillon N, de Courcy G, et al. A Polymorphism (80G>A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab. 2000;70(4):310–315. doi: 10.1006/mgme.2000.3034
  35. Warren R, Smith R, Campalani E, et al. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J Invest Dermatol. 2008;128(8):1925–1929. doi: 10.1038/jid.2008.16
  36. Plaza-Plaza J, Aguilera M, Cañadas-Garre M, et al. Pharmacogenetic polymorphisms contributing to toxicity induced by methotrexate in the southern spanish population with rheumatoid arthritis. OMICS. 2012;16(11):589–595. doi: 10.1089/omi.2011.0142
  37. Lynch M. The evolution of transcription-initiation sites. Mol Biol Evol. 2005;22(4):1137–1146. doi: 10.1093/molbev/msi100
  38. Lima A, Bernardes M, Azevedo R, et al. SLC19A1, SLC46A1 and SLCO1B1 polymorphisms as predictors of methotrexate-related toxicity in portuguese rheumatoid arthritis patients. Toxicological Sciences. 2014;142(1):196–209. doi: 10.1093/toxsci/kfu162
  39. Desmoulin S, Hou Z, Gangjee A, Matherly L. The human proton-coupled folate transporter. Cancer Biol Ther. 2012;13(14):1355–1373. doi: 10.4161/cbt.22020
  40. Bohanec Grabar P, Logar D, Lestan B, Dolžan V. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol. 2008;64(11):1057–1068. doi: 10.1007/s00228-008-0521-7
  41. Wang G, Cooper T. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Reviews Genetics. 2007;8(10):749–761. doi: 10.1038/nrg2164
  42. Qiu A, Jansen M, Sakaris A, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127(5):917–928. doi: 10.1016/j.cell.2006.09.041
  43. Treviño L, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27(35):5972–5978. doi: 10.1200/JCO.2008.20.4156
  44. Chango A, Chango A, Boisson F, et al. The effect of 677C → T and 1298A → C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects. Br J Nutr. 2000;83(6):593–596. doi: 10.1017/s0007114500000751
  45. Rosenberg N, Murata M, Ikeda Y, et al. The Frequent 5,10-methylenetetrahydrofolate reductase c677t polymorphism is associated with a common haplotype in whites, Japanese, and Africans. Am J Hum Genet. 2002;70(3):758–762. doi: 10.1086/338932
  46. Chiusolo P, Reddiconto G, Casorelli I, et al. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Annals of Oncology. 2002;13(12):1915–1918. doi: 10.1093/annonc/mdf322
  47. Van Ede A, Laan R, Blom H, et al. The C677T mutation in the methylenetetrahydrofolate reductase gene: A genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum. 2001;44(11):2525–2530. doi: 10.1002/1529-0131(200111)44:11<2525::aid-art432>;2-b
  48. Weisberg I, Tran P, Christensen B, et al. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–172. doi: 10.1006/mgme.1998.2714
  49. Kumagai K, Hiyama K, Oyama T, et al. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med. 2003;11(5):593–600.
  50. Trinh B, Ong C, Coetzee G, et al. Thymidylate synthase: a novel genetic determinant of plasma homocysteine and folate levels. Hum Genet. 2002;111(3):299–302. doi: 10.1007/s00439-002-0779-2
  51. Ulrich CM, Bigler J, Velicer CM, et al. Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol Biomarkers Prev. 2000;9(12):1381–1385.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2021 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies