MicroRNA diagnostic value in pemphigus diagnosis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Pemphigus is a group of life-threatening, chronic, progressive skin disease. To implement timely and adequate therapy aimed at preserving life and improving its quality, it is necessary to provide a diagnostic test confirming the diagnosis. Though various methods of diagnostics of the disease have been developed to date, many of them remain inaccessible to physicians and patients, as well as can give false-positive and false-negative results. A promising area of research is focused on microRNAs, such as miR-338-3p and miR-424-5p, which are associated with key pathogenetic processes, including regulation of apoptosis, imbalance of T-cell response and activation of autoimmune reactions.

AIMS: This study aimed to compare the expression levels of miR-338-3p and miR-424-5p in patients with pemphigus during therapy and remission, as well as in control groups of patients with other bullous skin diseases and healthy controls, and to evaluate the diagnostic value of miR-338-3p and miR-424-5p expression.

MATERIALS AND METHODS: Prospective comparative study was conducted. The study included 20 patients with active pemphigus, 15 patients in remission, 15 healthy control group participants, and 6 patients with other bullous diseases in the active stage. The expression of miRNA-338-3p and miR-424-5p was evaluated by qRT-PCR, cDNA was obtained using StemLoop technology. MicroRNA relative expression levels were analyzed based on its comparison with the expression of U6 gene using 2-ΔΔСT method.

RESULTS: The expression levels of miR-338-3p and miR-424-5p were significantly higher in patients with pemphigus active stage compared to all other groups (p < 0.001). There was a statistically significant relationship between miR-338-3p expression level and disease severity according to the PDAI index (p < 0.001), for miR-424-5p there was also a positive correlation with severity, but with a weaker relationship. ROC analysis showed high diagnostic accuracy of miR-338-3p (AUC = 0.94) and miR-424-5p (AUC = 0.93) for differentiating between patients with active pemphigus and healthy controls, with sensitivity and specificity of 95.0% and 75.0%, 95.0% and 73.3%, respectively. At week 3 from the start of glucocorticosteroid therapy, miR-338-3p levels were significantly decreased in patients in the active pemphigus (p = 0.035), whereas no statistically significant decrease in miR-424-5p was observed.

CONCLUSIONS: miR-338-3p and miR-424-5p are significant in pemphigus as potential biomarkers for diagnosis and severity grade, and the expression level of miR-338-3p can be used to determine the efficacy of pathogenetic therapy. The high diagnostic accuracy of both microRNAs determined by ROC analysis indicates the possibility of their use as biomarkers for timely detection of the disease and differential diagnosis with other bullous skin diseases.

Full Text

Restricted Access

About the authors

Natalya P. Teplyuk

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: teplyukn@gmail.com
ORCID iD: 0000-0002-5800-4800
SPIN-code: 8013-3256

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 4/1 Bolshaya Pirogovskaya street, 119991 Moscow

Nikolai L. Shimanovsky

The Russian National Research Medical University named after N.I. Pirogov

Email: shiman@rsmu.ru
ORCID iD: 0000-0001-8887-4420
SPIN-code: 5232-8230

MD, Dr. Sci. (Med.), Professor, Corresponding member of the Russian Academy of Sciences

Russian Federation, 1-6 Ostrovitjanova street, 117997, Moscow, Russia

Tatiana A. Fedotcheva

The Russian National Research Medical University named after N.I. Pirogov

Email: tfedotcheva@mail.ru
ORCID iD: 0000-0003-4998-9991
SPIN-code: 1261-5650

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 1-6 Ostrovitjanova street, 117997, Moscow, Russia

Daria V. Mak

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: dariamak25@gmail.com
ORCID iD: 0000-0002-7020-0572
SPIN-code: 8204-4555

Graduate student

Russian Federation, 8-2 Trubetskaya street, 119991 Moscow

Yuliya V. Kolesova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: kolesovamsmu@gmail.com
ORCID iD: 0000-0002-3617-2555
SPIN-code: 1441-8730

MD, Cand. Sci. (Med.), Assistant Lecturer

Russian Federation, 8-2 Trubetskaya street, 119991 Moscow

Anfisa A. Lepekhova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: anfisa.lepehova@yandex.ru
ORCID iD: 0000-0002-4365-3090
SPIN-code: 3261-3520

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, 8-2 Trubetskaya street, 119991 Moscow

Darya N. Ulchenko

The Russian National Research Medical University named after N.I. Pirogov

Email: motci@list.ru
ORCID iD: 0009-0008-1894-5746
SPIN-code: 9735-2364
Russian Federation, Moscow

References

  1. Olisova OY, Teplyuk NP. An illustrated guide to dermatology. For preparing practitioners for accreditation. Moscow: GEOTAR-Media; 2023. 376 р. (In Russ).
  2. Malik AM, Tupchong S, Huang S, Are A, Hsu S, Motaparthi K. An Updated Review of Pemphigus Diseases. Medicina (Kaunas). 2021;57(10):1080. Published 2021 Oct 9. doi: 10.3390/medicina57101080
  3. Schmidt E, Kasperkiewicz M, Joly P. Pemphigus. Lancet. 2019;394(10201):882-894. doi: 10.1016/S0140-6736(19)31778-7
  4. Amagai M, Tanikawa A, et al. Committee for Guidelines for the Management of Pemphigus Disease. Japanese guidelines for the management of pemphigus. J Dermatol. 2014;41(6):471-486. doi: 10.1111/1346-8138.12486
  5. Kridin K. Pemphigus group: Overview, epidemiology, mortality, and comorbidities. Immunol Res. 2018;66(2):255–270. doi: 10.1007/s12026-018-8986-7
  6. Gonçalves GA, Brito MM, Salathiel AM, Ferraz TS, Alves D, Roselino AM. Incidence of pemphigus vulgaris exceeds that of pemphigus foliaceus in a region where pemphigus foliaceus is endemic: analysis of a 21-year historical series. An Bras Dermatol. 2011;86(6):1109-1112. doi: 10.1590/s0365-05962011000600007
  7. Costan VV, Popa C, Hâncu MF, Porumb-Andrese E, Toader MP. Comprehensive review on the pathophysiology, clinical variants and management of pemphigus (Review). Exp Ther Med. 2021;22(5):1335. doi: 10.3892/etm.2021.10770
  8. Harel-Raviv M., Srolovitz H., Gornitsky M. Pemphigus vulgaris: The potential for error. A case report // Spec Care Dentist. 1995. Vol. 15, N 2. Р. 61–64. doi: 10.1111/j.1754-4505.1995.tb00478.x 20.
  9. Morishima-Koyano M., Nobeyama Y., Fukasawa-Momose M., et al. Case of pemphigus foliaceus misdiagnosed as a single condition of erythrodermic psoriasis and modified by broda- lumab // J Dermatol. 2020. Vol. 47, N 5. Р. e201–e202. doi: 10.1111/1346-8138.15295
  10. Daltaban Ö., Özçentik A., Karakaş A., et al. Clinical presentation and diagnostic delay in pemphigus vulgaris: A prospective study from Turkey // J Oral Pathol Med. 2020. Vol. 49, N 7. Р. 681–686. doi: 10.1111/jop.13052
  11. Khamaganova, I. V., Malyarenko, E. N., Denisova, E. V., Vorontsova, I. V., & Plieva, K. T. (2017). Mistakes of diagnostics in pemphigus vulgaris: case report. Russian Journal Of Skin And Venereal Diseases, 20(1), 30-33. doi: 10.18821/1560-9588-2017-20-1-30-33
  12. Teplyuk N.P., Kolesova Y.V., Mak D.V., Lepekhova A.A., Toshchakov S.V., Fedotcheva T.A. Pemphigus: New approaches to diagnosis and disease severity assessment // Russian Journal of Skin and Venereal Diseases. - 2023. - Vol. 26. - N. 5. - P. 515-526. doi: 10.17816/dv492306
  13. Kridin K, Bergman R. The Usefulness of Indirect Immunofluorescence in Pemphigus and the Natural History of Patients With Initial False-Positive Results: A Retrospective Cohort Study. Front Med (Lausanne). 2018;5:266. Published 2018 Oct 17. doi: 10.3389/fmed.2018.00266
  14. Giurdanella F, Nijenhuis AM, Diercks GFH, Jonkman MF, Pas HH. Keratinocyte Binding Assay Identifies Anti-Desmosomal Pemphigus Antibodies Where Other Tests Are Negative. Front Immunol. 2018;9:839. Published 2018 Apr 24. doi: 10.3389/fimmu.2018.00839
  15. Schmidt E, Dähnrich C, Rosemann A, et al. Novel ELISA systems for antibodies to desmoglein 1 and 3: correlation of disease activity with serum autoantibody levels in individual pemphigus patients. Exp Dermatol. 2010;19(5):458-463. doi: 10.1111/j.1600-0625.2010.01069.x
  16. O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in endocrinology, 9, 402. https://doi.org/10.3389/fendo.2018.00402
  17. Sanz-Rubio D., Martin-Burriel I., Gil A., Cubero P., Forner M., Khalyfa A., Marin J.M. Stability of circulating exosomal miRNAs in healthy subjects. Scientific Reports. 2018; 8 (1): 10306. doi: 10.1038/s41598-018-28748-5.
  18. Matias-Garcia P.R., Wilson R., Mussack V., Reischl E., Wald- enberger M., Gieger C., Anton G., Peters A., Kuehn-Steven A. Impact of long-term storage and freeze-thawing on eight circu- lating microRNAs in plasma samples. PLoS One. 2020; 15 (1): e0227648. doi: 10.1371/journal.pone.0227648.
  19. Ward Gahlawat A., Lenhardt J., Witte T., Keitel D., Kaufhold A., Maass K.K., Pajtler K.W., Sohn C., Schott S. Evaluation of storage tubes for combined analysis of circulating nucleic acids in liquid biopsies. International Journal of Molecular Sciences. 2019; 20 (3): 704. doi: 10.3390/ijms20030704
  20. Lin, N., Liu, Q., Wang, M., Wang, Q., & Zeng, K. (2018). Usefulness of miRNA-338-3p in the diagnosis of pemphigus and its correlation with disease severity. PeerJ, 6, e5388. https://doi.org/10.7717/peerj.5388
  21. Wang M, Liang L, Li L, et al. Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep. 2017;15(6):3479-3484. doi: 10.3892/mmr.2017.6422
  22. Rodriguez, M. S., Egaña, I., Lopitz-Otsoa, F., Aillet, F., Lopez-Mato, M. P., Dorronsoro, A., Lobato-Gil, S., Sutherland, J. D., Barrio, R., Trigueros, C., & Lang, V. (2014). The RING ubiquitin E3 RNF114 interacts with A20 and modulates NF-κB activity and T-cell activation. Cell death & disease, 5(8), e1399. https://doi.org/10.1038/cddis.2014.366
  23. Yang, P., Lu, Y., Li, M., Zhang, K., Li, C., Chen, H., Tao, D., Zhang, S., & Ma, Y. (2014). Identification of RNF114 as a novel positive regulatory protein for T cell activation. Immunobiology, 219(6), 432–439. https://doi.org/10.1016/j.imbio.2014.02.002
  24. Liu, Q., Cui, F., Wang, M., Xiong, H., Peng, X., Liang, L., Li, L., Zhang, J., Peng, X., & Zeng, K. (2018). Increased expression of microRNA-338-3p contributes to production of Dsg3 antibody in pemphigus vulgaris patients. Molecular medicine reports, 18(1), 550–556. https://doi.org/10.3892/mmr.2018.8934
  25. Satyam A., Khandpur S., Sharma V.K., Sharma A. Involvement of T(H)1/T(H)2 cytokines in the pathogenesis of autoimmune skin disease-Pemphigus vulgaris // Immunol Invest. 2009. Vol. 38, N 6. Р. 498–509. doi: 10.1080/08820130902943097
  26. Lee S.H., Hong W.J., Kim S.C. Analysis of serum cytokine profile in pemphigus // Ann Dermatol. 2017. Vol. 29, N 4. Р. 438–445. doi: 10.5021/ad.2017.29.4.438
  27. Rizzo, C., Fotino, M., Zhang, Y., et al. Direct characterization of human T cells in pemphigus vulgaris reveals elevated auto- antigen-specific Th2 activity in association with active disease // Clin Experimental Dermatol. 2005. Vol. 30, N 5. Р. 535–540. doi: 10.1111/j.1365-2230.2005.01836.x
  28. Teplyuk N.P., Mak D.V., Kolesova Y.V., Lepekhova A.A., Fedotcheva T.A., Ulchenko D.N. The miR-338-3p expression level in pemphigus diagnosis // Russian Journal of Skin and Venereal Diseases. - 2024. - Vol. 27. - N. 4. - P. 448-462. doi: 10.17816/dv633413
  29. Li X, Ishii N, Ohata C, Furumura M, Hashimoto T. Signalling pathways in pemphigus vulgaris. Exp Dermatol. 2014;23(3):155-156. doi: 10.1111/exd.12317
  30. Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA. Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem. 2007;282:13804–13812. doi: 10.1074/jbc.M611365200.
  31. Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, Rubenstein DS. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem. 2005;280:23778–23784. doi: 10.1074/jbc.M501365200.
  32. He W, Xing Y, Li C, et al. Identification of Six microRNAs as Potential Biomarkers for Pemphigus Vulgaris: From Diagnosis to Pathogenesis. Diagnostics (Basel). 2022;12(12):3058. Published 2022 Dec 6. doi: 10.3390/diagnostics12123058
  33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. doi: 10.1006/meth.2001.1262
  34. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962-974. doi: 10.1016/j.jconrel.2013.09.015
  35. Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell. 2019;179(5):1033-1055. doi: 10.1016/j.cell.2019.10.017
  36. Pozniak T, Shcharbin D, Bryszewska M. Circulating microRNAs in Medicine. Int J Mol Sci. 2022;23(7):3996. Published 2022 Apr 3. doi: 10.3390/ijms23073996
  37. Zhang, Q., Cannavicci, A., Dai, S.-C., Wang, C., & Kutryk, M. J. B. (2019). MicroRNA signature of human blood mononuclear cells. Molecular and Cellular Biochemistry. doi: 10.1007/s11010-019-03619-3
  38. Papara C, Zillikens D, Sadik CD, Baican A. MicroRNAs in pemphigus and pemphigoid diseases. Autoimmun Rev. 2021;20(7):102852. doi: 10.1016/j.autrev.2021.102852

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86501 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80653 от 15.03.2021 г
.