Role of innate immune receptors in the psoriasis development

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Psoriasis is an immune-mediated autoimmune inflammatory skin disease with a prevalence of 2 to 3% worldwide. In the psoriasis development and pathogenesis an important role is played by disorders in the immune system. Disruption of the innate and adaptive immune response mechanisms with the involvement of keratinocytes leads to the initiation and maintenance of inflammation.

Immune reactions are activated in the skin, in which various cells participate (macrophages, dendritic cells, mast cells, innate immune lymphoid cells, melanocytes, keratinocytes, Langerhans cells and γδT cells; T and B cells; epithelial endothelial and stromal cells of the skin), each of which expresses pattern recognition receptors that respond to pathogens and cell damage itself. Many of these receptors, in particular toll-like receptors and NOD-like receptors play an important role in the pathogenesis of psoriasis. The associated innate receptors signaling cascades that activate in the skin cells may become potential targets for the treatment of this disease.

To date, there are several approved drugs for biological therapy of psoriasis.

The study of the role of the innate immune cells receptors in inflammatory skin pathologies requires further exploration and new developments.

Full Text

Restricted Access

About the authors

Oxana A. Svitich

I.M. Sechenov First Moscow State Medical University (Sechenov University); I. Mechnikov Research Institute of Vaccines and Sera

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN-code: 8802-5569

MD, Dr. Sci. (Medicine), Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow; Moscow

Olga S. Yazkova

Central Clinic

Email: olesha230808@mail.ru
ORCID iD: 0000-0002-9644-4778
SPIN-code: 9548-9076

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Elizaveta P. Bystritskaya

I. Mechnikov Research Institute of Vaccines and Sera

Author for correspondence.
Email: lisabystritskaya@gmail.com
ORCID iD: 0000-0001-8430-1975
SPIN-code: 6769-2534
Russian Federation, Moscow

Olga Y. Olisova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754
SPIN-code: 2500-7989

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow

References

  1. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Identification and management of psoriasis and associated comorbidity (IMPACT) project team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–385. doi: 10.1038/jid.2012.339
  2. Danielsen K, Olsen AO, Wilsgaard T, Furberg AS. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort. Br J Dermatol. 2013;168(6):1303–1310. doi: 10.1111/bjd.12230
  3. Perera GK, Di Meglio P, Nestle FO. Psoriasis. Annu Rev Pathol. 2012;7:385–422. doi: 10.1146/annurev-pathol-011811-132448
  4. Garner KK, Hoy KD, Carpenter AM. Psoriasis: Recognition and management strategies. Am Fam Physician. 2023;108(6):562–573.
  5. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509. doi: 10.1056/NEJMra0804595
  6. Karamova AE, Olisova OY, Bakulev AL. Revisiting the question of psoriasis classification. Vestnik dermatologii i venerologii. 2021;97(5):18–25. doi: 10.25208/vdv1267
  7. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475. doi: 10.3390/ijms20061475
  8. Johnston A, Xing X, Wolterink L, et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J Allergy Clin Immunol. 2017;140(1):109–120. doi: 10.1016/j.jaci.2016.08.056
  9. Martin DA, Towne JE, Kricorian G, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J Invest Dermatol. 2013;133(1):17–26. doi: 10.1038/jid.2012.194
  10. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–255. doi: 10.1146/annurev-immunol-032713-120225
  11. Suwanpradid J, Holcomb ZE, MacLeod AS. Emerging skin T-cell functions in response to environmental insults. J Invest Dermatol. 2017;137(2):288–294. doi: 10.1016/j.jid.2016.08.013
  12. Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41–56. doi: 10.1111/imr.12577
  13. Almine JF, O’Hare CA, Dunphy G, et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun. 2017;8:14392. doi: 10.1038/ncomms14392
  14. Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18(6):374–389. doi: 10.1038/s41577-018-0004-8
  15. Lebre MC, van der Aar AM, van Baarsen L, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;127(2):331–341. doi: 10.1038/sj.jid.5700530
  16. Kalali BN, Köllisch G, Mages J, et al. Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling. J Immunol. 2008;181(4):2694–2704. doi: 10.4049/jimmunol.181.4.2694
  17. Borek I, Köffel R, Feichtinger J, et al. BMP7 aberrantly induced in the psoriatic epidermis instructs inflammation-associated Langerhans cells. J Allergy Clin Immunol. 2020;145(4):1194–1207.e11. doi: 10.1016/j.jaci.2019.12.011
  18. Wang X, Bi Z, Wang Y, Wang Y. Increased MAPK and NF-κB expression of Langerhans cells is dependent on TLR2 and TLR4, and increased IRF-3 expression is partially dependent on TLR4 following UV exposure. Mol Med Rep. 2011;4(3):541–546. doi: 10.3892/mmr.2011.450
  19. Jin SH, Kang HY. Activation of Toll-like receptors 1, 2, 4, 5, and 7 on human melanocytes modulate pigmentation. Ann Dermatol. 2010;22(4):486–489. doi: 10.5021/ad.2010.22.4.486
  20. Seo SW, Park SK, Oh SJ, Shin OS. TLR4-mediated activation of the ERK pathway following UVA irradiation contributes to increased cytokine and MMP expression in senescent human dermal fibroblasts. PLoS One. 2018;13(8):e0202323. doi: 10.1371/journal.pone.0202323
  21. Grän F, Kerstan A, Serfling E, et al. Current developments in the immunology of psoriasis. Yale J Biol Med. 2020;93(1):97–110. doi: 10.1038/jid.2010
  22. Abtin A, Eckhart L, Gläser R, et al. The antimicrobial heterodimer S100A8/S100A9 (calprotectin) is upregulated by bacterial flagellin in human epidermal keratinocytes. J Invest Dermatol. 2010;130(10):2423–2430. doi: 10.1038/jid.2010.158
  23. Ekman AK, Vegfors J, Eding CB, Enerbäck C. Overexpression of psoriasin (S100A7) contributes to dysregulated differentiation in psoriasis. Acta Derm Venereol. 2017;97(4):441–448. doi: 10.2340/00015555-2596
  24. Borsky P, Fiala Z, Andrys C, et al. Alarmins HMGB1, IL-33, S100A7, and S100A12 in psoriasis vulgaris. Mediators Inflamm. 2020;2020:8465083. doi: 10.1155/2020/8465083
  25. Miller LS, Sørensen OE, Liu PT, et al. TGF-alpha regulates TLR expression and function on epidermal keratinocytes. J Immunol. 2005;174(10):6137–6143. doi: 10.4049/jimmunol.174.10.6137
  26. Sweeney CM, Russell SE, Malara A, et al. Human β-defensin 3 and its mouse ortholog murine β-defensin 14 activate langerhans cells and exacerbate psoriasis-like skin inflammation in mice. J Invest Dermatol. 2016;136(3):723–727. doi: 10.1016/j.jid.2015.12.011
  27. Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621. doi: 10.1038/ncomms7595
  28. Tervaniemi MH, Katayama S, Skoog T, et al. NOD-like receptor signaling and inflammasome-related pathways are highlighted in psoriatic epidermis. Sci Rep. 2016;6:22745. doi: 10.1038/srep22745
  29. Jordan CT, Cao L, Roberson ED, et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90(5):784–795. doi: 10.1016/j.ajhg.2012.03.012
  30. Irrera N, Vaccaro M, Bitto A, et al. BAY 11-7082 inhibits the NF-κB and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. Clin Sci (Lond). 2017;131(6):487–498. doi: 10.1042/CS20160645
  31. Deng G, Chen W, Wang P, et al. Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice. Int Immunopharmacol. 2019;74:105682. doi: 10.1016/j.intimp.2019.105682
  32. Horváth S, Komlódi R, Perkecz A, et al. Methodological refinement of aldara-induced psoriasiform dermatitis model in mice. Sci Rep. 2019;9(1):3685. doi: 10.1038/s41598-019-39903-x
  33. Tian D, Lai Y. The relapse of psoriasis: Mechanisms and mysteries. JID Innov. 2022;2(3):100116. doi: 10.1016/j.xjidi.2022.100116
  34. Sereflican B, Goksugur N, Bugdayci G, et al. Serum visfatin, adiponectin, and tumor necrosis factor alpha (TNF-α) levels in patients with psoriasis and their correlation with disease severity. Acta Dermatovenerol Croat. 2016;24(1):13–19.
  35. Menter A, Strober BE, Kaplan DH, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol. 2019;80(4):1029–1072. doi: 10.1016/j.jaad.2018.11.057
  36. Reich K, Burden AD, Eaton JN, Hawkins NS. Efficacy of biologics in the treatment of moderate to severe psoriasis: A network meta-analysis of randomized controlled trials. Br J Dermatol. 2012;166(1):179–188. doi: 10.1111/j.1365-2133.2011.10583.x
  37. Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910–1914. doi: 10.1074/jbc.M207577200
  38. Fotiadou C, Lazaridou E, Sotiriou E, Ioannides D. Targeting IL-23 in psoriasis: Current perspectives. Psoriasis (Auckl). 2018;8:1–5. doi: 10.2147/PTT.S98893
  39. Papp KA, Blauvelt A, Bukhalo M, et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med. 2017;376(16):1551–1560. doi: 10.1056/NEJMoa1607017
  40. Grozdev I, Korman N, Tsankov N. Psoriasis as a systemic disease. Clin Dermatol. 2014;32(3):343–350. doi: 10.1016/j.clindermatol.2013.11.001
  41. Hao JQ. Targeting interleukin-22 in psoriasis. Inflammation. 2014;37(1):94–99. doi: 10.1007/s10753-013-9715-y
  42. Tsai YC, Tsai TF. Anti-interleukin and interleukin therapies for psoriasis: Current evidence and clinical usefulness. Ther Adv Musculoskelet Dis. 2017;9(11):277–294. doi: 10.1177/1759720X17735756
  43. Georgescu SR, Tampa M, Caruntu C, et al. Advances in understanding the immunological pathways in psoriasis. Int J Mol Sci. 2019;20(3):739. doi: 10.3390/ijms20030739
  44. Harden JL, Johnson-Huang LM, Chamian MF, et al. Humanized anti-IFN-γ (HuZAF) in the treatment of psoriasis. J Allergy Clin Immunol. 2015;135(2):553–556. doi: 10.1016/j.jaci.2014.05.046

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Immunopathogenesis of psoriasis. DNA ― deoxyribonucleic acid; RNA ― ribonucleic acid; AMPs ― antimicrobial peptides; pDC ― plasmacytoid dendritic cells; mDC ― myeloid dendritic cells; ILC ― innate lymphoid cells. Adapted from [33].

Download (687KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86501 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80653 от 15.03.2021 г
.