Genetic determinants of atopic dermatitis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Atopic dermatitis is a heterogeneous disease, the pathogenesis of which is associated with mutations of genes encoding structural proteins of the epidermis, barrier enzymes and their inhibitors.

The article analyzes data from the works of various authors on the study of gene expression in atopic dermatitis, and notes the role of genes regulating innate and adaptive immune responses, as well as environmental factors inducing the disease. Recent studies indicate a key role of epigenetic changes in the development of the disease. Epigenetic modifications are mainly mediated by DNA methylation, histone acetylation and the action of specific non-coding RNAs. It has been documented that the profile of epigenetic changes in patients with atopic dermatitis differs from that observed in healthy individuals.

Understanding epigenetic changes is critical for developing personalized treatment strategies.

Full Text

Restricted Access

About the authors

Inna P. Grebennikova

Saratov State Medical University named after V.I. Razumovsky

Author for correspondence.
Email: inna.pavlovna.gr@mail.ru
ORCID iD: 0009-0003-8951-1244
SPIN-code: 4615-2340
Russian Federation, 22 Proviantskaya street, 410028 Saratov

Anna V. Morrison

Saratov State Medical University named after V.I. Razumovsky

Email: morrison-av@rambler.ru
ORCID iD: 0000-0001-7214-3156
SPIN-code: 3018-8421

MD, Cand. Sci. (Med.), Associated Professor

Russian Federation, 22 Proviantskaya street, 410028 Saratov

Tatiana E. Lipatova

Saratov State Medical University named after V.I. Razumovsky

Email: lipatova.t@inbox.ru
ORCID iD: 0000-0002-7401-9930
SPIN-code: 2483-3578

MD, Dr. Sci. (Med.), Professor

Russian Federation, 22 Proviantskaya street, 410028 Saratov

Maria G. Yeremina

Saratov State Medical University named after V.I. Razumovsky

Email: 913693@mail.ru
ORCID iD: 0000-0001-9752-1352
SPIN-code: 9205-0670

MD, Dr. Sci. (Med.), Associated Professor

Russian Federation, 22 Proviantskaya street, 410028 Saratov

References

  1. Weidinger S, Beck LA, Bieber T, et al. Atopic dermatitis. Nat Rev Dis Prim. 2018;4(1):1. doi: 10.1038/s41572-018-0001-z
  2. Silverberg JI. Atopic dermatitis in adults. Med Clin North Am. 2020;104(1):157-176. EDN: QSPCPL doi: 10.1016/j.mcna.2019.08.009
  3. Olisova OY, Svitich OA, Poddubikov AV, et al. Microbiological assessment of the effectiveness of standard therapy in atopic dermatitis. Vestnik dermatologii i venerologii. 2023;99(3):44-52. EDN: PFBDNT doi: 10.25208/vdv1364
  4. Olisova OY, Svitich OA, Potapova MB, et al. The skin microbiome and atopic dermatitis: A review. Russ J Skin Venereal Dis. 2021;24(5):443-450. EDN: EAGDKX doi: 10.17816/dv80125
  5. Schmid P, Simon D, Simon H, et al. Epidemiology, clinical features, and immunology of the “intrinsic” (non-IgE-mediated) type of atopic dermatitis (constitutional dermatitis). Allergy. 2001;56(9):841-849. EDN: AZWRPP doi: 10.1034/j.1398-9995.2001.00144.x
  6. Flohr C, Johansson SG, Wahlgren CF, et al. How atopic is atopic dermatitis? J Allergy Clin Immunol. 2004;114(1):150-158. doi: 10.1016/j.jaci.2004.04.027
  7. Kayumova LN, Baker S, Bruskin SA, et al. Modern concepts of the epigenetic mechanisms of atopic dermatitis formation. Russ J Skin Venereal Dis. 2014;(4):42-51. EDN: SKILIT
  8. Martin MJ, Estravís M, García-Sánchez A, et al. Genetics and epigenetics of atopic dermatitis: An updated systematic review. Genes. 2020;11(4):442. EDN: AKPALK doi: 10.3390/genes11040442
  9. Løset M, Brown SJ, Saunes M, et al. Genetics of atopic dermatitis: From DNA sequence to clinical relevance. Dermatology. 2019;235(5):355-364. EDN: TMRSFS doi: 10.1159/000500402
  10. Liang Y, Chang C, Lu Q. The genetics and epigenetics of atopic dermatitis-filaggrin and other polymorphisms. Clin Rev Allergy Immunol. 2016;51(3):315-328. EDN: XQPOPF doi: 10.1007/s12016-015-8508-5
  11. Samotij D, Nedoszytko B, Bartosińska J, et al. Pathogenesis of psoriasis in the “omic” era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol. 2020;37(2):135-153. doi: 10.5114/ada.2020.94832
  12. Nedoszytko B, Szczerkowska-Dobosz A, Stawczyk-Maciej M, et al. Pathogenesis of psoriasis in the “omics” era. Part II: Genetic, genomic and epigenetic changes in psoriasis. Adv Dermatol Allergol. 2020;37(3):283-298. doi: 10.5114/ada.2020.96243
  13. Torres T, Ferreira EO, Gonçalo M, et al. Update on atopic dermatitis. Acta Med Port. 2019;32(9):606-613. EDN: NDTIBW doi: 10.20344/amp.11963
  14. Larsen FS. Atopic dermatitis: A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol. 1993;28(5):719-723. doi: 10.1016/0190-9622(93)70099-F
  15. Mu Z, Zhang J. The role of genetics, the environment, and epigenetics in atopic dermatitis. Adv Exp Med Biol. 2020;1253:107-140. EDN: XPHBMO doi: 10.1007/978-981-15-3449-2_4
  16. Bystritskaia EP, Murashkin NN, Olisova OY, et al. Innate immune factor gene expression profiles in patients with atopic dermatitis. Med Immunol. 2023;25(5):1037-1042. EDN: UCRKHT doi: 10.15789/1563-0625-IIF-2766
  17. Svitich O, Kudryavtseva A, Meremianina E, et al. Association SNP (-20G/A) in the DEFB1 gene with decreased expression levels of HBD-1 in patients with atopic dermatitis. Allergy. 2021;76(S110):243. EDN: GTOQWF
  18. Stemmler S, Hoffjan S. Trying to understand the genetics of atopic dermatitis. Mol Cell Probes. 2016;30(6):374-385. EDN: YWTFYF doi: 10.1016/j.mcp.2016.10.004
  19. Hoffjan S, Stemmler S. Unravelling the complex genetic background of atopic dermatitis: From genetic association results towards novel therapeutic strategies. Arch Dermatol Res. 2015;307(8):659-670. EDN: TZQAJA doi: 10.1007/s00403-015-1550-6
  20. Totté JE, van der Feltz WT, Hennekam M, et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687-695. doi: 10.1111/bjd.14566
  21. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-446. doi: 10.1038/ng1767
  22. McLean WH. Filaggrin failure-from ichthyosis vulgaris to atopic eczema and beyond. Br J Dermatol. 2016;175(Suppl. 2):4-7. doi: 10.1111/bjd.14997
  23. Brown SJ, Kroboth K, Sandilands A, et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Invest Dermatol. 2012;132(1):98-104. doi: 10.1038/jid.2011.342
  24. Gutowska-Owsiak D, Schaupp AL, Salimi M, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21(2):104-110. doi: 10.1111/j.1600-0625.2011.01412.x
  25. Kawasaki H, Nagao K, Kubo A, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538-1546. doi: 10.1016/j.jaci.2012.01.068
  26. Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol. 2013;132(1):15-26. doi: 10.1016/j.jaci.2013.04.011
  27. Ziyab AH, Karmaus W, Holloway JW, et al. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol. 2013;27(3):420-423. doi: 10.1111/jdv.12000
  28. Knudsen TM, Rezwan FI, Jiang Y, et al. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol. 2018;142(3):765-772. doi: 10.1016/j.jaci.2018.07.007
  29. Legoff L, D’Cruz SC, Tevosian S, et al. Transgenerational inheritance of environmentally induced epigenetic alterations during mammalian development. Cells. 2019;8(12):1559. doi: 10.3390/cells8121559
  30. Kaiser J. The epigenetics heretic. Science. 2014;343(6169):361-363. doi: 10.1126/science.343.6169.361
  31. Luo Y, Zhou B, Zhao M, et al. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 2014;39(1):48-53. doi: 10.1111/ced.12206
  32. Stevens ML, Zhang Z, Johansson E, et al. Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nat Commun. 2020;11(1): 4092. EDN: NFDKUT doi: 10.1038/s41467-020-17895-x
  33. Nguyen CM, Liao W. Genomic imprinting in psoriasis and atopic dermatitis: A review. J Dermatol Sci. 2015;80(2):89-93. doi: 10.1016/j.jdermsci.2015.08.004
  34. Lee YA, Wahn U, Kehrt R, et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet. 2000;26(4):470-473. doi: 10.1038/82625
  35. Yu X, Wang M, Li L, et al. MicroRNAs in atopic dermatitis: A systematic review. J Cell Mol Med. 2020;24(11):5966-5972. doi: 10.1111/jcmm.15208
  36. Rebane A, Runnel T, Aab A, et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol. 2014;134(2):836-847.e11. doi: 10.1016/j.jaci.2014.05.022
  37. Sonkoly E, Janson P, Majuri ML, et al. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol. 2010;126(3):520-581. doi: 10.1016/j.jaci.2010.05.045
  38. Ma L, Xue H, Wang F, et al. MicroRNA-155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 (Th17) cells. Clin Exp Immunol. 2015;181(1):142-149. doi: 10.1111/cei.12624
  39. Cao S, Feehley TJ, Nagler CR. The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett. 2014;588(22):4258-426. doi: 10.1016/j.febslet.2014.04.0266
  40. Sharma M, Li Y, Stoll ML, et al. The epigenetic connection between the gut microbiome in obesity and diabetes. Front Genet. 2019;(10):1329. doi: 10.3389/fgene.2019.01329
  41. Wang IJ, Chen SL, Lu TP, et al. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013;43(5):535-543. doi: 10.1111/cea.12108
  42. Fujimaki W, Takahashi N, Ohnuma K, et al. Comparative study of regulatory T cell function of human CD25CD4 T cells from thymocytes, cord blood, and adult peripheral blood. Clin Dev Immunol. 2008;2008:305859. doi: 10.1155/2008/305859
  43. Hinz D, Bauer M, Röder S, et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy. 2012;67(3):380-389. doi: 10.1111/j.1398-9995.2011.02767.x
  44. Oh KS, Patel H, Gottschalk RA, et al. Anti-inflammatory chromatinscape suggests alternative mechanisms of glucocorticoid receptor action. Immunity. 2017;47(2):298-309. doi: 10.1016/j.immuni.2017.07.012

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86501 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80653 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies