Diagnosis of melanocytic neoplasms: a literature review

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article presents an analysis of foreign literature sources describing the possibilities of using various diagnostic methods and combining diagnostic methods and their analytical software and artificial intelligence for the diagnosis of benign and malignant melanocytic nevi. Evaluation of efficiency was performed. The disadvantages of diagnostic methods based on the results of foreign studies in recent years are described.

Full Text

Restricted Access

About the authors

Olga Yu. Olisova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: Olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754

MD, PhD, DSc, Professor, Head of Department of Skin and Venereal Diseases

Russian Federation, Moscow

O. A. Pritulo

Medical Academy n.a. S.I. Georgievsky of Vernadsky Crimean Federal University

Email: Olisovaolga@mail.ru
ORCID iD: 0000-0001-6515-1924
Russian Federation, Simferopol

T. I. Kirilyuk

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: Olisovaolga@mail.ru
ORCID iD: 0000-0002-2720-9942
Russian Federation, Moscow

References

  1. Zalaudek I, Manzo M, Savarese I, Docimo G, Ferrara G, Argenziano G. The morphologic universe of melanocytic nevi. Semin Cutan Med Surg. 2009;28(3):149-56.
  2. Huang JM, Chikeka I, Hornyak TJ. Melanocytic nevi and the genetic and epigenetic control of oncogene-induced senescence. Dermatol Clin. 2017;35(1):85-93. doi: 10.1016/j.det.2016.08.00
  3. Levy R, Lara-Corrales I. Melanocytic nevi in children: A review. Pediatr Ann. 2016;45(8):e293-8. doi: 10.3928/19382359-20160720-07.
  4. Olisova OYu, Andreeva EV. Once more about hyperpigmentation. Russian Journal of Skin and Venereal Diseases. 2014;17(2):20-4. (in Russian)
  5. Olisova OYu, Vladimirova EV, Babushkin AM. The skin and the sun // Russian Journal of Skin and Venereal Diseases. 2012;15(6):57-62.
  6. Pampena R, Kyrgidis A, Lallas A, Moscarella E, Argenziano G, Longo C. A meta-analysis of nevus-associated melanoma: Prevalence and practical implications. J Am Acad Dermatol. 2017;77(5):938-45.e4. doi: 10.1016/j.jaad.2017.06.149.
  7. Sheen YS, Liao YH, Lin MH, Chen JS, Liau JY, Liang CW, et al. Clinicopathological features and prognosis of patients with de novo versus nevus-associated melanoma in Taiwan. PLoS One. 2017;12(5):e0177126.
  8. Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345-58. doi: 10.1038/nrc.2016.37.
  9. Wolner ZJ, Yelamos O, Liopyris K, Rogers T, Marchetti MA, Marghoob AA. Enhancing skin cancer diagnosis with dermoscopy. Dermatol Clin. 2017;35(4):417-37. doi: 10.1016/j.det.2017.06.003.
  10. Piccolo D, Ferrari A, Peris K, Diadone R, Ruggeri B, Chimenti S. Dermoscopic diagnosis by a trained clinician vs. a clinician with minimal dermoscopy training vs. computer-aided diagnosis of 341 pigmented skin lesions: a comparative study. Br J Dermatol. 2002;147(3):481-6.
  11. Weber P, Tschandl P, Sinz C, Kittler H. Dermatoscopy of neoplastic skin lesions: recent advances, updates, and revisions. Curr Treat Options Oncol. 2018;19(11):56. doi: 10.1007/s11864-018-0573-6.
  12. Dolianitis C, Kelly J, Wolfe R, Simpson P. Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Arch Dermatol. 2005;141(8):1008-14.
  13. Carrera C, Marchetti MA, Dusza SW, Argenziano G, Braun RP, Halpern AC, et al. Validity and reliability of dermoscopic criteria used to differentiate nevi from melanoma: A web-based International Dermoscopy Society Study. JAMA Dermatol. 2016;152(7):798-806. doi: 10.1001/jamadermatol.2016.0624.
  14. Rigel DS, Friedman RJ. The rationale of the ABCDs of early melanoma. J Am Acad Dermatol. 1993;29(6):1060-1. doi: 10.1016/s0190-9622(08)82059-2.
  15. Thomas L, Tranchand P, Berard F, Secchi T, Colin C, Moulin G. Semiological value of ABCDE criteria in the diagnosis of cutaneous pigmented tumors. Dermatology. 1998;197(1):11-7. doi: 10.1159/000017969.
  16. Chamberlain AJ, Fritschi L, Kelly JW. Nodular melanoma: patients’ perceptions of presenting features and implications for earlier detection. J Am Acad Dermatol. 2003;48(5):694-701. doi: 10.1067/mjd.2003.216.
  17. Menzies SW, Ingvar C, Crotty KA, McCarthy WH. Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol. 1996;132(10):1178-82.
  18. Henning JS, Dusza SW, Wang SQ, Marghoob AA, Rabinovitz HS, Polsky D, Kopf AW. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J Am Acad Dermatol. 2007;56(1):45-52. doi: 10.1016/j.jaad.2006.09.003.
  19. Unlu E, Akay BN, Erdem C. Comparison of dermatoscopic diagnostic algorithms based on calculation: The ABCD rule of dermatoscopy, the seven-point checklist, the three-point checklist and the CASH algorithm in dermatoscopic evaluation of melanocytic lesions. J Dermatol. 2014;41(7):598-603. doi: 10.1111/1346-8138.12491.
  20. Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol. 1998;134(12):1563-70. doi: 10.1001/archderm.134.12.1563.
  21. Haenssle HA, Krueger U, Vente C, Thoms KM, Bertsch HP, Zutt M, et al. Results from an observational trial: digital epiluminescence microscopy follow-up of atypical nevi increases the sensitivity and the chance of success of conventional dermoscopy in detecting melanoma. J Invest Dermatol. 2006;126(5):980-5.
  22. Argenziano G, Mordente I, Ferrara G, Sgambato A, Annese P, Zalaudek I. Dermoscopic monitoring of melanocytic skin lesions: clinical outcome and patient compliance vary according to follow-up protocols. Br J Dermatol. 2008;159(2):331-6.
  23. Skvara H, Teban L, Fiebiger M, Binder M, Kittler H. Limitations of dermoscopy in the recognition of melanoma. Arch Dermatol. 2005;141(2):155-60.
  24. Deinlein T, Michor C, Hofmann-Wellenhof R, Schmid-Zalaudek K, Fink-Puches R. The importance of total-body photography and sequential digital dermatoscopy for monitoring patients at increased melanoma risk. J Dtsch Dermatol Ges. 2020;18(7):692-7. doi: 10.1111/ddg.14158.
  25. Salerni G, Carrera C, Lovatto L, Marti-Laborda RM, Isern G, Palou J, et al. Characterization of 1152 lesions excised over 10 years using total-body photography and digital dermatoscopy in the surveillance of patients at high risk for melanoma. J Am Acad Dermatol. 2012;67(5):836-45.
  26. March J, Hand M, Grossman D. Practical application of new technologies for melanoma diagnosis: Part I. Noninvasive approaches. J Am Acad Dermatol. 2015;72(6):929-41. doi: 10.1016/j.jaad.2015.02.1138.
  27. Shrivastava V, Bailin P, Elliott J, Bacnik E, Gastman B, Bergfeld W, et al. Histopathologic correlation of high-risk MelaFindTM lesions: a 3-year experience from a high-risk pigmented lesion clinic. Int J Dermatol. 2019;58(5):569-76. doi: 10.1111/ijd.14336.
  28. Emery JD, Hunter J, Hall PN, Watson AJ, Moncrieff M, Walter FM. Accuracy of SIAscopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC Dermatol. 2010;10:9. doi: 10.1186/1471-5945-10-9.
  29. Sgouros D, Lallas A, Julian Y, Rigopoulos D, Zalaudek I, Longo C, Moscarella E, Simonetti V, Argenziano G. Assessment of SIAscopy in the triage of suspicious skin tumours. Skin Res Technol. 2014;20(4):440-4. doi: 10.1111/srt.12138.
  30. Hartmann D, Krammer S, Ruini C, Ruzicka T, von Braunmuhl T. Correlation of histological and ex-vivo confocal tumor thickness in malignant melanoma. Lasers Med Sci. 2016;31(5):921-7. doi: 10.1007/s10103-016-1936-5.
  31. Alarcon I, Carrera C, Puig S, Malvehy J. Utilidad clínica de la microscopia confocal de reflectancia en el manejo del lentigo maligno melanoma. Actas Dermosifiliogr. 2014;105:e13–7.
  32. Shu X, Beckmann L, Zhang H. Visible-light optical coherence tomography: a review. J Biomed Opt. 2017;22(12):1-14. doi: 10.1117/1.JBO.22.12.121707.
  33. Sattler E, Kastle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt. 2013;18(6):061224.
  34. Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin cancer identification using multifrequency electrical impedance–a potential screening tool. IEEE Trans Biomed Eng. 2004;51(12):2097-102.
  35. Ferris LK, Gerami P, Skelsey MK, Peck G, Hren C, Gorman C, et al. Real-world performance and utility of a noninvasive gene expression assay to evaluate melanoma risk in pigmented lesions. Melanoma Res. 2018;28(5):478-82. doi: 10.1097/CMR.0000000000000478.
  36. Schmalzlin E, Moralejo B, Gersonde I, Schleusener J, Darvin ME, Thiede G, Roth MM. Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination. J Biomed Opt. 2018;23(10):1-11. doi: 10.1117/1.JBO.23.10.105001.
  37. Feng X, Moy AJ, Nguyen HTM, Zhang Y, Zhang J, Fox MC, et al. Raman biophysical markers in skin cancer diagnosis. J Biomed Opt. 2018;23(5):1-10. doi: 10.1117/1.JBO.23.5.057002.
  38. Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345-58. doi: 10.1038/nrc.2016.37.
  39. Weinstock MA, Lott JP, Wang Q, Titus LJ, Onega T, Nelson HD, et al. Skin biopsy utilization and melanoma incidence among Medicare beneficiaries. Br J Dermatol. 2017;176(4):949-54. doi: 10.1111/bjd.15077.
  40. de Menezes SL, Wolfe R, Kelly JW, Farrugia H, Mar VJ. Think before you shave: Factors influencing choice of biopsy technique for invasive melanoma and effect on definitive management. Australas J Dermatol. 2020;61(2):134-9. doi: 10.1111/ajd.13227.
  41. Shellenberger RA, Fayyaz F, Sako Z, Schaeffer M, Tawagi K, Scheidel C, Nabhan M. Impact of biopsy technique on clinically important outcomes for cutaneous melanoma: A systematic review and meta-analysis. Mayo Clin Proc Innov Qual Outcomes. 2020;4(4):373-83. doi: 10.1016/j.mayocpiqo.2020.04.005.
  42. Farberg AS, Rigel DS. A comparison of current practice patterns of US dermatologists versus published guidelines for the biopsy, initial management, and follow up of patients with primary cutaneous melanoma. J Am Acad Dermatol. 2016;75(6):1193-7.e1. doi: 10.1016/j.jaad.2016.07.051.
  43. de Menezes SL, Kelly JW, Wolfe R, Farrugia H, Mar VJ. The increasing use of shave biopsy for diagnosing invasive melanoma in Australia. Med J Aust. 2019;211(5):213-8. doi: 10.5694/mja2.50289.
  44. Pavri SN, Clune J, Ariyan S, Narayan D. Malignant melanoma: beyond the basics. Plast Reconstr Surg. 2016;138(2): e330-40. doi: 10.1097/PRS.0000000000002367.
  45. Zuluaga-Sepulveda MA, Arellano-Mendoza I, Ocampo-Candiani J. Update on surgical treatment of primary and metastatic cutaneous melanoma. Cir Cir. 2016;84(1):77-84. doi: 10.1016/j.circir.2015.06.020.
  46. Kinsler VA, O’Hare P, Bulstrode N, Calonje JE, Chong WK, Hargrave D, et al. Melanoma in congenital melanocytic naevi. Br J Dermatol. 2017;176(5):1131-43. doi: 10.1111/bjd.15301.
  47. Riverso M, Montagnani V, Stecca B. KLF4 is regulated by RAS/RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth. Oncogene. 2017;36(23):3322-33. doi: 10.1038/onc.2016.481.
  48. Malicherova B, Burjanivova T, Minarikova E, Kasubova I, Pecova T, Bobrovska M, et al. Detection of driver mutations in FFPE samples from patients with verified malignant melanoma. Neoplasma. 2019;66(1):33-8. doi: 10.4149/neo_2018_180115N31.
  49. Xia J, Jia P, Hutchinson KE, Dahlman KB, Johnson D, Sosman J, et al. A meta-analysis of somatic mutations from next generation sequencing of 241 melanomas: a road map for the study of genes with potential clinical relevance. Mol Cancer Ther. 2014;13(7):1918-28. doi: 10.1158/1535-7163.MCT-13-0804.
  50. Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, et al.; for members of the American Joint Committee on Cancer Melanoma Expert Panel and the International Melanoma Database and Discovery Platform. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(6):472-92. doi: 10.3322/caac.21409.
  51. Nosrati A, Tsai KK, Goldinger SM, Tumeh P, Grimes B, Loo K, et al. Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy. Br J Cancer. 2017;116(9):1141-7. doi: 10.1038/bjc.2017.70.
  52. Wevers KP, Kruijff S, Speijers MJ, Bastiaannet E, Muller Kobold AC, Hoekstra HJ. S-100B: a stronger prognostic biomarker than LDH in stage IIIB-C melanoma. Ann Surg Oncol. 2013;20(8):2772-9. doi: 10.1245/s10434-013-2949-y.
  53. Deckers EA, Kruijff S, Brouwers AH, van der Steen K, Hoekstra HJ, Thompson JF, et al. The association between active tumor volume, total lesion glycolysis and levels of S-100B and LDH in stage IV melanoma patients. Eur J Surg Oncol. 2020:S0748-7983(20)30637-5. doi: 10.1016/j.ejso.2020.07.011.
  54. Mumford SL, Towler BP, Pashler AL, Gilleard O, Martin Y, Newbury SF. Circulating MicroRNA biomarkers in melanoma: tools and challenges in personalised medicine. Biomolecules. 2018;8(2):21. doi: 10.3390/biom8020021.
  55. Shvetsova YuI, Palkina NV, Aksenenko MB, Ruksha TG. Changes in microRNA expression in skin melanocytic tumors. Russian Journal of Skin and Venereal Diseases. 2015;18(3):6-9. (in Russian)
  56. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836-42.
  57. Sondermann W, Utikal JS, Enk AH, Schadendorf D, Klode J, Hauschild A, et al. Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data. Eur J Cancer. 2019;119:30-4. doi: 10.1016/j.ejca.2019.07.009.
  58. Elmore JG, Barnhill RL, Elder DE, Longton GM, Pepe MS, Reisch LM, et al. Pathologists’ diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study. BMJ. 2017;357:j2813. doi: 10.1136/bmj.j2813.
  59. Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. 2019;119:11-7. doi: 10.1016/j.ejca.2019.05.023.
  60. Sergeev YuYu, Olisova OYu. Analysis of patient attendency on dermatoscopy examination. Russian Journal of Skin and Venereal Diseases. 2016;19(2):107. (in Russian)

Statistics

Views

Abstract: 160

PDF (Russian): 9

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c) 2020 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies