EXPRESSION OF T-CADHERIN IN KERATINOCYTES AND VESSELS OF EPITHELIAL TUMORS OF THE SKIN

Abstract

The expression of T-cadherin was studied in normal skin, in psoriasis, epithelial benign and malignant tumors of the skin. In normal skin T-cadherin was expressed by epidermal basal cells. Basal expression was also detected in psoriasis, actinic keratosis, keratoacanthoma, and surface basiloma. The expression of T-cadherin was significantly lower in malignant tumor cells (infiltrative basiloma, metatypical and squamous cell cancer). Normal skin vascular endotheliocytes and benign tumor cells expressed von Willebrand ’s factor (vWF) and T-cadherin. Loss of expression of the classical markers of endothelial cells (vWF), expression of -actin in vessel-like structures, and heterogeneity of T-cadherin expression in tumor vessels correlated with histological signs and invasive phenotypes of more aggressive tumors, such as metatypical cancer, invasive basiloma, and squamous cell carcinoma.

Full Text

Особенности экспрессии Т-кадгерина в кератиноцитах и сосудах эпителиальных опухолей кожи
×

References

  1. Глушакова Н.А. Изменения регуляции межклеточной адгезии при опухолевой трансформации. Биохимия 2008; 7: 925—34.
  2. Kurzen H., Münzing I., Hartschuh W. Expression of desmosomal proteins in squamous cell carcinomas of the skin. J. Cutan. Pathol. 2003; 30(10): 621—30.
  3. Oh C.W., Penneys N. p27 and mib1 expression in actinic keratosis, Bowen disease, and squamous cell carcinoma. Am. J. Dermatopathol. 2004; 26(1): 22—6.
  4. Verdolini R., Amerio P., Goteri G., Bugatti L., Lucarini G., Mannello B., et al. Cutaneous carcinomas and preinvasive neoplastic lesions. Role of MMP-2 and MMP-9 metalloproteinases in neoplastic invasion and their relationship with proliferative activity and p53 expression. J. Cutan. Pathol. 2001; 28(3): 120—6.
  5. Weigelt B., Peterse J.L., van’t Veer L.J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer. 2005; 5(8): 591—602.
  6. Andreeva A.V., Kutuzov M.A., Tkachuk V.A., Voyno-Yasenetskaya T.A. T-cadherin is located in the nucleus and centrosomes in endothelial cells. Am. J. Physiol. Cell Physiol. 2009; 297(5): C1168—C1177.
  7. Ranscht B., Dours-Zimmermann M.T. T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron. 1991; 7(3): 391—402.
  8. Rubina K., Kalinina N., Potekhina A., Efimenko A., Semina E., Poliakov A., et al. T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis. 2007; 10(3): 183—95.
  9. Рубина К.А., Ткачук В.А. Т-кадгерин как антиадгезивная молекула и возможный рецептор липопротеидов низкой плотности в клетках кровеносных сосудов. Российский физиологический журнал им. И.М. Сеченова. 2004; 8: 968—86.
  10. Doyle D.D., Goings G.E., Upshaw-Earley J., Page E., Ranscht B., Palfrey H.C. T-cadherin is a major glycophosphoinositolanchored protein associated with noncaveolar detergentinsoluble domains of the cardiac sarcolemma. J. Biol. Chem. 1998; 273(12): 6937—43.
  11. Philippova M.P., Bochkov V.N., Stambolsky D.V., Tkachuk V.A., Resink T.J. T-cadherin and signal-transducing molecules colocalize in caveolin-rich membrane domain of vascular smooth muscle cells. FEBS Letters. 1998; 429(2): 207—10.
  12. Philippova M., Ivanov D., Joshi M.B., Kyriakakis E., Rupp K., Afonyushkin T., et al. Identification of proteins associating with glycosylphosphatidylinositol-anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherindependent cell survival. Mol. Cell. Biol. 2008; 28(12): 4004— 17. doi: 10.1128/MCB.00157-08.
  13. Brown D.A., London E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 2000; 275(23): 17221—4.
  14. Takeuchi T., Liang S.B., Matsuyoshi N., Zhou S., Miyachi Y., Sonobe H., Ohtsuki Y. Loss of T-cadherin (CDH13, H-cadherin) expression in cutaneous squamous cell carcinoma. Lab. Invest. 2002; 82(8): 1023—9.
  15. Adachi Y., Takeuchi T., Nagayama T., Ohtsuki Y., Furihata M. Zeb1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FeBS Letters. 2009; 583(2): 430—doi: 10.1016/j.febslet.2008.12.042.
  16. Riener M.O., Nikolopoulos E., Herr A., Wild P.J., Hausmann M., Wiech T., et al. Microarray comparative genomic hybridization analysis of tubular breast carcinoma shows recurrent loss of the CDH13 locus on 16q. Hum. Pathol. 2008; 39(11): 1621—9. doi: 10.1016/j.humpath.2008.02.021.
  17. Sato M., Mori Y., Sakurada A., Fujimura S., Horii A. The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum. Genetics. 1998; 103(1): 96—101.
  18. Suehiro Y., Okada T., Anno K., Okayama N., Ueno K., Hiura M., et al. Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin. Cancer Res. 2008; 14(11): 3354—61. doi: 10.1158/1078-0432.CCR-07-4609.
  19. Zucchini C., Bianchini M., Valvassori L., Perdichizzi S., Benini S., Manara M.C., et al. Identification of candidate genes involved in the reversal of malignant phenotype of osteosarcoma cells transfected with the liver/bone/kidney alkaline phosphatase gene. Bone. 2004; 34(4): 672—9.
  20. Riou P., Saffroy R., Chenailler C., Franc B., Gentile C., Rubinstein E., et al. Expression of T-cadherin in tumor cells influences invasive potential of human hepatocellular carcinoma. FASEB J. 2006; 20(13): 2291—301.
  21. Zhou S., Matsuyoshi N., Liang S.B., Takeuchi T., Ohtsuki Y., Miyachi Y. Expression of T-cadherin in basal keratinocytes of skin. J. Invest. Dermatol. 2002; 118(6): 1080—4.
  22. Pfaff D., Philippova M., Buechner S.A., Maslova K., Mathys T., Erne P., Resink T.J. T-cadherin loss induces an invasive phenotype in human keratinocytes and squamous cell carcinoma (SCC) cells in vitro and is associated with malignant transformation of cutaneous SCC in vivo. Br. J. Dermatol. 2010; 163(2): 353—63.
  23. Takeuch, T. Ohtsuk, Y. Recent progress in T-cadherin (CDH13, H-cadherin) research. Histology and Histopathology. 2001; 16(4): 1287—93.
  24. Takeuchi T., Liang S.B., Ohtsuki Y. Downregulation of expression of a novel cadherin molecule, T-cadherin, in basal cell carcinoma of the skin. Mol. Carcinogen. 2002; 35(4): 173—9.
  25. Mukoyama Y., Zhou S., Miyachi Y., Matsuyoshi N. T-cadherin negatively regulates the proliferation of cutaneous squamous carcinoma cells. J. Invest. Dermatol. 2005; 124(4): 833—8.
  26. Chan D.W., Lee J.M., Chan P.C., Ng I.O. Genetic and epigenetic inactivation of T-cadherin in human hepatocellular carcinoma cells. Inter. J. Cancer. 2008; 123(5): 1043—52. doi: 10.1002/ ijc.23634.
  27. Kuphal S., Martyn A.C., Pedley J., Crowther L.M., Bonazzi V.F., Parsons P.G., et al. H-cadherin expression reduces invasion of malignant melanoma. Pigment Cell Melanoma Res. 2009; 22(3): 296—306. doi: 10.1111/j.1755-148X.2009.00568.x
  28. Lee S.W., Reimer C.L., Campbell D.B., Cheresh P., Duda R.B., Kocher O. H-cadherin expression inhibits in vitro invasiveness and tumor formation in vivo. Carcinogenesis. 1998; 19(6): 1157—9.
  29. Lee S.W. H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nature Med. 1996; 2(7): 776—82.
  30. Takeuchi T., Misaki A., Liang S.B., Tachibana A., Hayashi N., Sonobe H, Ohtsuki Y. Expression of T-cadherin (CDH13, H-cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J. Neurochem. 2000; 74(4): 1489—97.
  31. Huang Z.Y., Wu Y., Hedrick N., Gutmann D.H. T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21 (CIP1/WAF1) expression. Mol. Cell. Biol. 2003; 23(2): 566—78.
  32. Folkman J. The role of angiogenesis in tumor growth. Sem. Cancer Biol. 1992; 3(2): 65—71.
  33. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med. 1995; 1(1): 27—31.
  34. Holmgren L., O’Reilly M.S., Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1995; 1(2): 149—53.
  35. Parangi S.B., O’Reilly M., Christofori G., Holmgren L., Grosfeld J., Folkman J., Hanahan D. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl. Acad. Sci. U.S.A. 1996; 93(5): 2002—7.
  36. Risau W. Mechanisms of angiogenesis. Nature. 1997; 386(6626): 671—4.
  37. Chaplin D.J., Pettit G.R., Hill S.A. Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res. 1999; 19(1A): 189—95.
  38. Chaplin D.J., Pettit G.R., Parkins C.S., Hill S.A. Anti-vascular approaches to solid tumour therapy: evaluation of tubulin binding agents. Br. J. Cancer. 1996; 27(Suppl): S86—S88.
  39. Hasan J., Byers R., Jayson G.C. Intra-tumoural microvessel density in human solid tumours. Br. J. Cancer. 2002; 86(10): 1566—77.
  40. Sasano H., Ohashi Y., Suzuki T., Nagura H. Vascularity in human adrenal cortex. Mod. Pathol. 1998; 11(4): 329—33.
  41. Folkman J. Tumor angiogenesis: from bench to bedside. In: Marmé Dieter, Fusenig Norbert, eds. Tumor angiogenesis. Basic mechanisms and cancer therapy. Berlin; Heidelberg: Springer; 2008: 3—28.
  42. Offersen B.V., Borre M., Sorensen F.B., Overgaard J. Comparison of methods of microvascular staining and quantification in prostate carcinoma: relevance to prognosis. APMIS. 2002; 110(2): 177—85.
  43. Rubin M.A., Buyyounouski M., Bagiella E., Sharir S., Neugut A., Benson M., et al. Microvessel density in prostate cancer: lack of correlation with tumor grade, pathologic stage, and clinical outcome. Urology. 1999; 53(3): 542—7.
  44. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 2000; 6(4): 389—95.
  45. Jain R.K., Carmeliet P.F. Vessels of death or life. Sci. Am. 2001; 285(6): 38—45.
  46. Ivanov D., Philippova M., Antropova J., Gubaeva F., Iljinskaya O., Tararak E., et al. Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem. Cell Biol. 2001; 115(3): 231—42.
  47. Wyder L., Vitaliti A., Schneider H., Hebbard L.W., Moritz D.R., Wittmer M., et al. Increased expression of H/T-cadherin in tumor-penetrating blood vessels. Cancer Res. 2000; 60(17): 4682—8.
  48. Hebbard L.W., Garlatti M., Young L.J., Cardiff R.D., Oshima R.G., Ranscht B. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 2008; 68(5): 1407—16.
  49. Adachi Y., Takeuchi T., Sonobe H., Ohtsuki Y. An adiponectin receptor, T-cadherin, was selectively expressed in intratumoral capillary endothelial cells in hepatocellular carcinoma: possible cross talk between T-cadherin and FGF-2 pathways. Virchows Arch. 2006; 448(3): 311—8.
  50. Ghosh S., Joshi M.B., Ivanov D., Feder-Mengus C., Spagnoli G.C., Martin I., et al. Use of multicellular tumor spheroids to dissect endothelial cell-tumor cell interactions: a role for T-cadherin in tumor angiogenesis. FEBS Lett. 2007; 581(23): 4523—8.
  51. Buechner S.A., Philippova M., Erne P., Mathys T., Resink T.J. High T-cadherin expression is a feature of basal cell carcinoma. Br. J. Dermatol. 2009; 161(1): 199—202. doi: 10.1111/j.1365-2133.2009.09195.x.
  52. Ivanov D., Philippova M., Allenspach R., Erne P., Resink T. T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells. Cardiovasc. Res. 2004; 64(1): 132—43.

Copyright (c) 2013 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies