The dynamics of morphological and functional changes of face neck skin at using injectables

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The article deals with the issues of face and neck skin involutional changes, which are considered to be the first and easily determined signs of the body aging. Clinical studies of the effectiveness of the therapy with medicines based on hyaluronic acid, silicon and zinc are presented. Based on the presented data, the possibility of further clinical trials of pharmacological preparations used to treat the skin of the face and neck is discussed.

Of particular interest are data on the dynamics of expression of key biomarkers of skin aging in the combined use of silicon- and zinc-containing injectable drugs. The addition of zinc can enhance the effect of silicon compounds in the composition of these drugs.

Organosilicon (silanol) increases the synthesis of type III collagen and elastin and has a protective effect against photodamage of the skin. An increase in the formation of type III collagen was revealed when using silicon complexes with chitinase, while an increase in the expression of TGF-β and an increase in fibroblast proliferation were also revealed.

The use of silicon- and zinc-containing drugs is a promising, but still insufficiently studied direction of therapy for involutional changes in the skin of the face and neck. Silicon and zinc in the composition of drugs for anti-aging therapy can have a synergistic effect, affecting a number of important molecular mechanisms of skin aging.

Full Text

Restricted Access

About the authors

Isita A. Khanalieva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
ORCID iD: 0000-0003-4426-1934
SPIN-code: 7131-3022


Russian Federation, Moscow


  1. Ilnitskiy AN, Proschaev KI, Trofimova SV. Preventive geriatrics, or anti-aging medicine. Successes Gerontology. 2015;28(3):589–592.(In Russ).
  2. Da Costa JP, Vitorino R, Silva GM, et al. A brief overview of aging ― theories, mechanisms and prospects for the future. Aging Res Rev. 2016;29:90–112. doi: 10.1016/j.arr.2016.06.005
  3. KolgunenkoII. Fundamentals of gerontocosmetology. Moscow: Medicine; 1974. 222 p.
  4. Araviyskaya ER. Skin changes in perimenopause. Principles of modern complex correction. Clin Dermatol Venereol. 2007;5(2): 97–100. (In Russ).
  5. Kononov AV, Gorodilov RV, Manturova NE. Skin aging: mechanisms of formation and structural changes. Annals of plastic, reconstructive and aesthetic surgery. 2010;(1):88–92. (In Russ).
  6. Smolyakova SA, Olisova OY. Correction of age-related skin changes in women using an amino acid cluster. Russ JSkin Venereal Diseases. 2015;18(2):50–57.(In Russ).
  7. Silina EV, Manturova NE, Morgulis NV, Stupin VA. Physiology of skin aging. Plastic Sur Aesthetic Med. 2020;(2):40–45. (In Russ). doi: 10.17116/plast.hirurgia202002140
  8. Zubulis KS, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Dermatol Wedge. 2011;29(1):3–14. doi: 10.1016/j.clindermatol.2010.07.001
  9. Kohl E, Steinbauer J, Landthaler M, Seimis RM. Skin aging. J Eur Acad Dermatol Venereol. 2011;25(8):873–884. doi: 10.1111/j.1468-3083.2010.03963.x
  10. Kruglikov IL, Scherer PE. Skin aging as a mechanical phenomenon: the main weak links. Nutr Healthy Aging. 2018;4(4):291–307.doi: 10.3233/NHA-170037
  11. Borzykh OB, Petrova MM, Schneider NA, Nasyrova RF. Problems of introduction of personalized medicine in medical cosmetology in Russia. Siberian Med Rev. 2021;(2):12–22. (In Russ). doi: 10.20333/2500136-2021-2-12-22
  12. Makrantonaki E, Zubulis KK, William J. Cunliffe science awards. Characteristics and pathomechanisms of endogenously aged skin. Dermatology. 2007;214(4):352–360. doi: 10.1159/000100890
  13. Newton VL, McConnell JK, Hibbert SA, et al. Skin aging: molecular pathology, skin remodeling and a revolution in imaging. G Ital Dermatol Venerol. 2015;150(6):665–674.
  14. Zhang S, Duan E. The fight against skin aging: the path from the bench to the patient’s bed. Cell Transplantation. 2018;27(5):729–738. doi: 10.1177/0963689717725755
  15. Bonte F, Girard D, Archambault JK, Demulier A. Skin changes during aging. Subcellular Biochemistry. 2019;91:249–280. doi: 10.1007/978-981-13-3681-2-10
  16. Lowry UE. It’s written on your face: molecular and physiological consequences of skin aging. Mechanical Aging Dev. 2020;190:111315. doi: 10.1016/j.mad.2020.111315
  17. Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Guilford progeria syndrome: the disease of premature aging. Mole Neurobiol. 2018;55(5):4417–4427. doi: 10.1007/s12035-017-0610-7
  18. Puizina-Ivich N. Skin aging. Acta Dermatovenerol Alp Pannonica Adriat. 2008;17(2):47–54.
  19. Tseluiko SS, Malyuk EA, Korneeva LS, Krasavina NP. Morphofunctional characteristics of the dermis of the skin and its changes during aging (literature review). Bulletin Physiology Pathology Respiration. 2016;(60):111–116. (In Russ).
  20. Kostyaeva MG, Kastro IV, Eremina IZ. Some morphological aspects of skin aging. Morphology. 2020;157(2-3):110. (In Russ).
  21. Omurzakova AT, Izranov VA. Age-related changes in facial skin (literature review and results of own research). Bulletin New Med Technol. 2020;27(1):105–109. (In Russ). doi: 10.24411/1609-2163-2020-16621
  22. Naylor EK, Watson RE, Sherratt MJ. Molecular aspects of skin aging. Maturitas. 2011;69(3):249–256. doi: 10.1016/j.maturitas.2011.04.011
  23. Olisova OY, Vladimirova EV, Babushkin AM. Skin and sun. Russ J Skin Venereal Diseases. 2012;(6):57–62. (In Russ).
  24. Araviyskaya ER, Sokolovsky EV. Photoprotection in modern dermatology and cosmetology: classical ideas and new information. Bulletin Dermatol Venereol. 2013;(3):114–118. (In Russ).
  25. Gu Y, Han J, Jiang K, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Aging Res Rev. 2020;59:101036. doi: 10.1016/j.arr.2020.101036
  26. Trautinger F, Mazzucco K, Knobler RM, et al. UVA- and UVB-induced changes in the collagen of the skin of hairless mice. Arch Dermatol Res. 1994;286(8):490–494. doi: 10.1007/BF00371578
  27. Cohen R. Skin antioxidants: their role in aging and oxidative stress – new approaches to their assessment. Biomedical Pharmacotherapy. 1999;53(4):181–192. doi: 10.1016/S0753-3322(99)80087-0
  28. Lefart ED. Skin aging and oxidative stress: anti-aging effects of Equol through biochemical and molecular mechanisms. Aging Res Rev. 2016;31:36–54. doi: 10.1016/j.arr.2016.08.001
  29. Wang Y, Wang L, Wen H, et al. Transmission of NF-kB signals during skin aging. MechAgingDev. 2019;184:111160. doi: 10.1016/j.mad.2019.111160
  30. Batti S, Jitsukawa S, Bernerd F, et al. A new understanding of photoaging, damage caused by UV radiation, and skin types. Exp Dermatol. 2014;23(Suppl 1):7–12. doi: 10.1111/exd.12388
  31. Gerasimchuk M, Cherkasova V, Kovalchuk O, Kovalchuk I. The role of microRNAs in the aging of the body and skin. Int J Mol Sci. 2020;21(15):5281. doi: 10.3390/ijms21155281
  32. Rek K, Tigges J, Sass S, et al. miR-23a-3p causes cellular aging by acting on hyaluronan synthase 2: possible effect on skin aging. J Invest Dermatol. 2015;135(2):369–377. doi: 10.1038/jid.2014.422
  33. Fiedler J, Granniger E, Pfanne A, et al. Identification of miR-126 as a new skin aging regulator. ExpDermatol. 2017;26(3):284–286. doi: 10.1111/exd.13173
  34. Farrar MD. Advanced glycation end products for aging and photoaging of the skin: what are the consequences for the function of the epidermis? Exp Dermatol. 2016;25(12):947–948. doi: 10.1111/exd.13076
  35. Eassa HA, Eltokhi MA, Fayyaz HA, et al. Modern topical strategies for the treatment of aging and skin inflammation: science versus fiction. J Cosmetic Sci. 2020;71(5):321–350.
  36. Ansari TM, Hossein MR, Kamiya K, et al. Inflammatory molecules associated with skin aging mediated by ultraviolet radiation. Int J Mol Sci. 2021;22(8):3974.doi: 10.3390/ijms22083974
  37. Cardoso AL, Fernandez A, Aguilar-Pimentel JA, et al. Towards biomarkers of fragility: candidates from genes and pathways regulating aging and age-related diseases. Aging Res Rev. 2018;47:214–277. doi: 10.1016/j.arr.2018.07.004
  38. Wang AS, Drizen O. Biomarkers of cellular aging and skin aging. Front Genet. 2018;9:247. doi: 10.3389/fgene.2018.00247
  39. Kim SH, Kim JH, Suk JM, et al. Identification of biomarkers of skin aging correlating with biomechanical properties. Skin Restoration Tech. 2021;27(5):940–947. doi: 10.1111/srt.13046
  40. Khabarov V, Zhukova I, Ivanov P, Kvetnoy I. Skin biorevitalization: molecular mechanisms of inhibition of cellular aging. Aesthetic Med. 2020;(1):13–19. (In Russ).
  41. Khabarov V, Zhukova I, Ivanov P, Kvetnoy I. Neuroendocrine biomarkers of skin aging in molecular cosmetology. Aesthetic Med. 2021;(1):26–35. (In Russ).
  42. Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015;61(5):427–434. doi: 10.1159/000371708
  43. Nigdelioglu R, Hamanaka RB, Meliton AY, et al. Transforming growth factor (TGF)-βpromotes de novo serine synthesis for collagen production. J Biol Chem. 2016;291(53):27239–27251. doi: 10.1074/jbc.M116.756247
  44. Gutop EO, Dyatlova AS, Linkova NS, et al. Aging of skin fibroblasts: genetic and epigenetic factors. Successes Gerontology. 2019;32(6):908–914. (In Russ).
  45. Zhuang Y, Lyga J. Inflammaging in skin and other tissues ― the roles of complement system and macrophage. Inflamm Allergy Drug Targets. 2014;13(3):153–161. doi: 10.2174/1871528113666140522112003
  46. Khabarov VN, Rodichkina VN, Fingers MA. Molecular cosmetology. Signaling mechanisms of skin aging, targeted prevention and therapy. Moscow: Eco-Vector; 2021. 191 p.
  47. Shin JW, Kwon SH, Choi JY, et al. Molecular mechanisms of dermal aging and antiaging approaches. Int J Mol Sci. 2019;20(9):2126. doi: 10.3390/ijms20092126
  48. Birchall JD. The essentiality of silicon in biology. Chem Soc Rev. 1995;24:351–357.
  49. Jurkic LM, Cepanec I, Pavelic SK, Pavelic K. Biological and therapeutic effects of orthosilicic acid and some orthosilicic acid-releasing compounds: new perspectives for therapy. Nutr Metab. 2013;10(1):2. doi: 10.1186/1743-7075-10-2
  50. Jugdaohsingh R, Calomme MR, Robinson K, et al. Increased longitudinal growth in rats on a silicon-depleted diet. Bone. 2008;43(3):596–606. doi: 10.1016/j.bone.2008.04.014
  51. Jugdaohsingh R, Tucker KL, Qiao N, et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res. 2004;19(2):297–307. doi: 10.1359/JBMR.0301225
  52. Kalil CL, Campos V, Cignachi S, et al. Evaluation of cutaneous rejuvenation associated with the use of ortho-silicic acid stabilized by hydrolyzed marine collagen. J Cosmet Dermatol. 2018;17(5): 814–820. doi: 10.1111/jocd.12430
  53. Bisse E, Epting T, Beil A, et al. Reference values for serum silicon in adults. Anal Biochem. 2005;337(1):130–135. doi: 10.1016/j.ab.2004.10.034
  54. Garneau AP, Carpentier GA, Marcoux AA, et al. Aquaporins mediate silicon transport in humans. PLoS One. 2015;10(8):e0136149.doi: 10.1371/journal.pone.0136149
  55. Li S, Li C, Wang W. Molecular aspects of aquaporins. Vitam Horm. 2020;113:129–181. doi: 10.1016/bs.vh.2019.08.019
  56. Bollag WB, Aitkens L, White J, et al. Aquaporin-3 in the epidermis: more than skin deep. Am J Physiol Cell Physiol. 2020;318(6): C1144–C1153. doi: 10.1152/ajpcell.00075.2020
  57. Hara M, Verkman AS. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci USA. 2003;100:7360–7365. doi: 10.1073/pnas.1230416100
  58. Seleit I, Bakry OA, El Rebey HS, et al. Is Aquaporin-3 a determinant factor of intrinsic and extrinsic aging? An immunohistochemical and morphometric study. Appl Immunohistochem Mol Morphol. 2017;25(1):49–57.doi: 10.1097/PAI.0000000000000265
  59. Xie H, Zhou L, Liu F, et al. Autophagy induction regulates aquaporin 3-mediated skin fibroblasts aging. Br J Dermatol. 2021;186(2):318–333. doi: 10.1111/bjd.20662
  60. Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care. 2009;12(6):646–652. doi: 10.1097/MCO.0b013e3283312956
  61. Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68(1):19–31. doi: 10.1007/s12576-017-0571-7
  62. Sharif R, Thomas P, Zalewski P, Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Mol Nutr Food Res. 2015;59(6):1200–1212. doi: 10.1002/mnfr.201400784
  63. Deglesne PA, Arroyo R, López J, et al. In vitro study of RRSSilisorg CE Class III medical device composed of silanol: effect on human skin fibroblasts and its clinical use. Med Devices (Auckl). 2018;11:313–320. doi: 10.2147/MDER.S167078
  64. Fenske NA, Lober CW. Skin changes of aging: pathological implications. Geriatrics. 1990;45(3):27–35.
  65. Khabarov V, Zhukova I, Kvetnoy I. Study of the physiological role of silicon and zinc in the composition of injectable hyaluronic acid hydrogels. Aesthetic Med. 2020;(2):137–143. (In Russ).
  66. Ilnitsky AN, Masnaya MV, Ismanova VD, et al. Morphotypes of skin aging as a selection criterion for programs of somato-cognitive prevention of premature aging. Modern Problems Healthcare Med Statist. 2021;(2):61–72. (In Russ).

Copyright (c) 2022 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 015912 от 28.03.1997 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80653 от 15.03.2021 г

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies