The skin microbiome and atopic dermatitis: a review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Atopic dermatitis is a common chronic inflammatory skin disease that may be accompanied by food allergy, allergic rhinitis or asthma. The pathogenesis of atopic dermatitis is complex and based on interaction between an impaired epidermal barrier, immune dysregulation of both innate and adaptive immunity and the skin microbiome.

The skin microbiome plays an essential role in the development and, consequently, normal functioning of the skin immune system. The term “microbiome” is used to describe the collection of microorganisms and its genomic elements in a particular ecological niche. These microbial communities comprise a variety of microorganisms, including eukaryotes, archaea, bacteria, viruses and skin mites. The bacterial community of the skin is conditionally divided into two groups. Resident bacteria belong to a group of microorganisms that live relatively permanently on the surface of the skin. They are often referred to as commensal bacteria, which are necessary for the normal development and maintenance of the body’s immune defenses. In turn, transient microorganisms that temporarily inhabit the surface of the skin enter it from the environment and persist from several hours to several days. Under normal conditions, with proper hygiene and normal integrity of the skin barrier, resident and transient microbes are not pathogenic. Thus, cutaneous dysbiosis can lead to immune system overactivity as well as inflammatory skin conditions. It has been shown that the relationships between microbes within the skin surface play an important role in the development of atopic dermatitis.

Moreover, exacerbations of the atopic dermatitis are associated not only with the loss of microbial diversity but also with the predominance of Staphylococcus aureus.

Further skin microbiome studies and thus understanding of its role in atopic dermatitis could provide an effective therapeutic approach to restore well-balanced skin microbiome.

Full Text

Restricted Access

About the authors

Olga Yu. Olisova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754
SPIN-code: 2500-7989

MD, Dr. Sci. (Med.), Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Oxana A. Svitich

I. Mechnikov Research Institute of Vaccines and Sera

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN-code: 8802-5569

MD, Dr. Sci. (Med.), Corresponding Member of Russian Academy of Sciences

Russian Federation, Moscow

Mariia B. Potapova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: ptpv.msh@gmail.com
ORCID iD: 0000-0001-9647-1322

MD, Graduate Student

Russian Federation, 8 buil. 2 Trubetskaya street, Moscow, 119991

References

  1. Avena-Woods C. Overview of atopic dermatitis. Am J Manag Care. 2017;23(8 Suppl):S115–S123.
  2. Weidinger S, Beck LA, Bieber T, et al. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1.
  3. Nedoszytko B, Reszka E, Gutowska-Owsiak D, et al. Genetic and epigenetic aspects of atopic dermatitis. Int J Mol Sci. 2020;21(18):6484.
  4. Pothmann A, Illing T, Wiegand C, et al. The microbiome and atopic dermatitis: a review. Am J Clin Dermatol. 2019;20(6):749–761. doi: 10.1007/s40257-019-00467-1
  5. Cabanillas B, Brehler AC, Novak N. Atopic dermatitis phenotypes and the need for personalized medicine. Curr Opin Allergy Clin Immunol. 2017;17(4):309–315.
  6. Lunjani N, Hlela C, O’Mahony L. Microbiome and skin biology. Curr Opin Allergy Clin Immunol. 2019;19(4):328–333.
  7. Balato A, Cacciapuoti S, Di Caprio R, et al. Human microbiome: composition and role in inflammatory skin diseases. Arch Immunol Ther Exp (Warsz). 2019;67(1):1–18.
  8. Grice EA, Kong HH, Renaud G, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043–1050.
  9. Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Invest Dermatol. 2012;132(3 Pt 2):933–939.
  10. Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12(4):496–508.
  11. Bonté F, Girard D, Archambault JC, Desmoulière A. Skin changes during ageing. Subcell Biochem. 2019;91:249–280. doi: 10.1007/978-981-13-3681-2_10
  12. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25(5):370–377. doi: 10.1016/j.smim.2013.09.005
  13. Vorobyova NE, Shipitsyna EV, Savicheva AM. Skin microbiota in women of reproductive age in norm and androgen-dependent dermatoses. J Obstetrics Women’s Dis. 2019;68(2):7–16. (In Russ). doi: 10.17816/JOWD6827-16
  14. Olisova OY, Vladimirova EV, Babushkin AM. The skin and the sun. Russ J Skin Ven Dis. 2012;15(6):57–62. (In Russ).
  15. Lam TH, Verzotto D, Brahma P, et al. Understanding the microbial basis of body odor in pre-pubescent children and teenagers. Microbiome. 2018;6(1):213.
  16. Araviyskaya ER, Sokolovsky EV. Microbiome: a new era in the study of healthy and pathologically altered skin. Bulletin Dermatol Venereol. 2016;3:102–109.
  17. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–11975.
  18. Lunjani N, Satitsuksanoa P, Lukasik Z, et al. Recent developments and highlights in mechanisms of allergic diseases: Microbiome. Allergy. 2018;73(12):2314–2327.
  19. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiology. 2018;16(3):143–155. doi: 10.1038/nrmicro.2017.157
  20. Oh J, Byrd AL, Park M, et al. Temporal stability of the human skin microbiome. Cell. 2016;165(4):854–866.
  21. Kong HH, Andersson B, Clavel T, et al. Performing skin microbiome research: a method to the madness. J Invest Dermatol. 2017;137(3):561–568.
  22. Kusari A, Han AM, Schairer D, Eichenfield LF. Atopic dermatitis: new developments. Dermatol Clin. 2019;37(1):11–20.
  23. Otto M. Staphylococcus epidermidis--the ‘accidental’ pathogen. Nat Rev Microbiol. 2009;7(8):555–567.
  24. Brown MM, Horswill AR. Staphylococcus epidermidis-Skin friend or foe? PLoS Pathog. 2020;16(11):e1009026. doi: 10.1371/journal.ppat.1009026
  25. Chieosilapatham P, Ogawa H, Niyonsaba F. Current insights into the role of human β-defensins in atopic dermatitis. Clin Exp Immunol. 2017;190(2):155–166.
  26. Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–349. doi: 10.1038/nature09074
  27. Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–370.
  28. Thomas CL, Fernández-Peñas P. The microbiome and atopic eczema: More than skin deep. Australas J Dermatol. 2017;58(1):18–24. doi: 10.1111/ajd.12435
  29. Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21(12):660–668. doi: 10.1016/j.tim.2013.10.001
  30. Sfriso R, Egert M, Gempeler M, et al. Revealing the secret life of skin ― with the microbiome you never walk alone. Int J Cosmet Sci. 2020;42(2):116–126. doi: 10.1111/ics.12594
  31. Foulongne V, Sauvage V, Hebert C, et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PloS One. 2012;7(6):e38499. doi: 10.1371/journal.pone.0038499
  32. Yu Y, Dunaway S, Champer J, et al. Changing our microbiome: probiotics in dermatology. Br J Dermatol. 2020;182(1):39–46.
  33. Yoshikawa SY, de Lima JF, Sato MN, et al. Exploring the role of staphylococcus aureus toxins in atopic dermatitis. Toxins. 2019;11(6):321. doi: 10.3390/toxins11060321
  34. Totté JE, van der Feltz WT, Hennekam M, et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–695.
  35. Aguilera AC, Dagher IA, Kloepfer KM. Role of the microbiome in allergic disease development. Curr Allergy Asthma Rep. 2020;20(9):44.
  36. Gavrilova T. Immune dysregulation in the pathogenesis of atopic dermatitis. Dermatitis. 2018;29(2):57–62.
  37. Litusov NV. Grampolozhitelnye aerobnye kokki. Illustrated textbook. Ekaterinburg; 2016. 89 р. (In Russ).
  38. Paller AS, Kong HH, Seed P, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):26–35. doi: 10.1016/j.jaci.2018.11.015
  39. Allen HB, Vaze ND, Choi C, et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol. 2014;150(3):260–265.
  40. Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. The role of malassezia spp. in atopic dermatitis. J Clin Med. 2015;4(6):1217–1228.
  41. White TC, Findley K, Dawson TL, et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med. 2014;4(8):a019802. doi: 10.1101/cshperspect.a019802
  42. Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;51(3):329–337. doi: 10.1007/s12016-016-8548-5
  43. Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680.
  44. Myles IA, Earland NJ, Anderson ED, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018;3(9):e120608.

Copyright (c) 2022 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies