Pathogenesis of psoriasis: past, present, future

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Psoriasis is a common, chronic, systemic immune-mediated inflammatory disease that affects the skin, joints, and other organs and systems. Despite the fact that psoriasis is one of the most studied dermatoses, its pathogenesis has not yet been fully clarified. In recent years, the pathogenetic model leading to the formation of psoriatic papules and plaques has undergone significant changes.

This article presents a retrospective analysis of the study of the disease over the past 60 years from the generally accepted concept of epidermal dermatosis to understanding the complex interactions between keratinocytes, dendritic cells, T-lymphocytes, neutrophils and mast cells, with a significant role of interleukins (IL) 23, 17, 22,10, T-helper cells (Th) 17, 22, T-regulatory cells, transformative growth factor b1 (TGF-b1), in the pathogenesis of the disease. Targeted therapy using new biologics and small molecules, patient education, screening for comorbidities, and regular patient follow-up allow to apply a personalized approach to the patient and achieve impressive results.

Achievements in psoriasis research have led to the fact that today we are witnessing the so-called translational revolution in psoriasis therapy, consisting in the fastest possible transfer of fundamental discoveries of the field of theoretical research to the field of practical application.

Full Text

Restricted Access

About the authors

Olga V. Kandalova

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Author for correspondence.
Email: olga_kandalova@inbox.ru
ORCID iD: 0000-0003-0723-2800
SPIN-code: 8998-2307

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Moscow

Dina E. Klyuchnikova

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: dina_kl@list.ru
ORCID iD: 0000-0001-6595-1825
SPIN-code: 1809-7581

MD, Cand. Sci. (Med.), Assistant Lecturer

Russian Federation, Moscow

Tatyana V. Ayvazova

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: aivazova_tatyana@mail.ru
ORCID iD: 0000-0002-4495-3909
SPIN-code: 7894-8684

MD, Cand. Sci. (Med.), Assistant Lecturer

Russian Federation, Moscow

References

  1. Boehncke WH, Schön MP. Psoriasis. Lancet. 2015;386(9997): 983–994. doi: 10.1016/S0140-6736(14)61909-7
  2. Al Qassimi S, Al Brashdi S, Galadari H, Hashim MJ. Global burden of psoriasis ― comparison of regional and global epidemiology, 1990 to 2017. Int J Dermatol. 2020;59(5):566–571. doi: 10.1111/ijd.14864
  3. Parisi R, Iskandar IY, Kontopantelis E, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. doi: 10.1136/bmj.m1590
  4. Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370(9583):263–271. doi: 10.1016/S0140-6736(07)61128-3
  5. Takeshita J, Grewal S, Langan SM, et al. Psoriasis and comorbid diseases: epidemiology. J Am Acad Dermatol. 2017;76(3):377–390. doi: 10.1016/j.jaad.2016.07.064
  6. Gelfand JM, Neimann AL, Shin DB, et al. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296(14):1735–1741. doi: 10.1001/jama.296.14.1735
  7. Ahlehoff O, Gislason GH, Jørgensen CH, et al. Psoriasis and risk of atrial fibrillation and ischaemic stroke: a Danish Nationwide Cohort Study. Eur Heart J. 2012;33(16):2054–2064. doi: 10.1093/eurheartj/ehr285
  8. Fernandez A.P. Dermatology update: the dawn of targeted treatment. Cleveland Clinic J Med. 2015;82(5):309–320. doi: 10.3949/ccjm.82gr.15002
  9. Weinstein GD, McCullough JL. Cytokinetics and chemotherapy of psoriasis. J Invest Dermatol. 1976;67(1):26–30. doi: 10.1111/1523-1747.ep12512476
  10. Weinstein GD, Frost P. Abnormal cell proliferation in psoriasis. J Invest Dermatol. 1968;50(3):254–259.
  11. Voorhees JJ, Duell EA, Bass LJ, et al. The cyclic AMP system in normal and psoriatic epidermis. J Invest Dermatol. 1972;59(1): 114–120. doi: 10.1111/1523-1747.ep12625885
  12. Rusin LJ, Duell EA, Voorhees JJ. Papaverine and Ro 20-1724 inhibit cyclic nucleotide phosphodiesterase activity and increase cyclic AMP levels in psoriatic epidermis in vitro. J Invest Dermatol. 1978;71(2):154–156. doi: 10.1111/1523-1747.ep12546928
  13. Nast A, Jacobs A, Rosumeck S, Werner RN. Efficacy and safety of systemic long-term treatments for moderate-to-severe psoriasis: a systematic review and meta-analysis. J Invest Dermatol. 2015;135(11):2641–2648. doi: 10.1038/jid.2015.206
  14. Perlamutrov YN, Aivazova TV, Olkhovskaya KB, Soloviev AM. Modern possibilities of systemic therapy of psoriasis. Russ J Clin Dermatology Venereology. 2019;18(4):474–478. (In Russ). doi: 10.17116/klinderma201918041474
  15. Brain S, Camp R, Dowd P, et al. The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol. 1984;83(1):70–73. doi: 10.1111/1523-1747.ep12261712
  16. Zhang H, Hou W, Henrot L, et al. Modelling epidermis homoeostasis and psoriasis pathogenesis. J R Soc Interface. 2015;12(103):20141071. doi: 10.1098/rsif.2014.1071
  17. Kim SA, Ryu YW, Kwon JI, et al. Differential expression of cyclin D1, Ki-67, pRb, and p53 in psoriatic skin lesions and normal skin. Mol Med Rep. 2018;17(1):735–742. doi: 10.3892/mmr.2017.8015
  18. Hwang YJ, Na JI, Byun SY, et al. Histone deacetylase 1 and sirtuin 1 expression in psoriatic skin: a comparison between guttate and plaque psoriasis. Life (Basel). 2020;10(9):157. doi: 10.3390/life10090157
  19. Zhang X, Yin M, Zhang LJ. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis. Cells. 2019;8(8):807. doi: 10.3390/cells8080807
  20. Nickoloff BJ, Nickoloff BJ. The cytokine network in psoriasis. Arch Dermatol. 1991;127:871–884.
  21. Uyemura K, Yamamura M, Fivenson DF, et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol. 1993;101(5):701–705. doi: 10.1111/1523-1747.ep12371679
  22. Pinegin BV, Ivanov L., Pinegin VB. The role of immune system cells and cytokines in the development of psoriasis. Russ J Skin Venereal Diseases. 2013;(3):19–25. (In Russ).
  23. Lynde CW, Poulin Y, Vender R, et al. Interleukin 17A: toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol. 2014;71(1):141–150. doi: 10.1016/j.jaad.2013.12.036
  24. Leonardi CL, Powers JL, Matheson RT, et al.; Etanercept Psoriasis Study Group. Etanercept as monotherapy in patients with psoriasis. N Engl J Med. 2003;20;349(21):2014–2022. doi: 10.1056/NEJMoa030409
  25. Leonardi CL, Kimball AB, Papp KA, et al.; PHOENIX 1 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–1674. doi: 10.1016/S0140-6736(08)60725-4
  26. Leonardi CL, Gordon KB. New and emerging therapies in psoriasis. Semin Cutan Med Surg. 2014;33(2 Suppl 2):S37–41. doi: 10.12788/j.sder.0066
  27. Leonardi C, Matheson R, Zachariae C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–1199. doi: 10.1056/NEJMoa1109997
  28. Papp A, Leonardi C, Menter A, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–1189. doi: 10.1056/NEJMoa1109017
  29. Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55(3):379–390. doi: 10.1007/s12016-018-8702-3
  30. Olisova OY, Anpilogova EM. Systemic treatment of psoriasis: from methotrexate to biologics. Bulletin Dermatology Venereology. 2020;96(3):7–26. (In Russ). doi: 10.25208/vdv1162
  31. Piro MC, Ventura A, Smirnov A, et al. Transglutaminase 3 reduces the severity of psoriasis in imiquimod-treated mouse skin. Int J Mol Sci. 2020;21(5):1566. doi: 10.3390/ijms21051566
  32. Matsuki M, Yamashita F, Ishida-Yamamoto A, et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci USA. 1998;95(3):1044–1049. doi: 10.1073/pnas.95.3.1044
  33. Tian S, Krueger JG, Li K, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS One. 2012;7(9):e44274. doi: 10.1371/journal.pone.0044274
  34. Suárez-Fariñas M, Li K, Fuentes-Duculan J, et al. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J Invest Dermatol. 2012;132(11):2552–2564. doi: 10.1038/jid.2012.184
  35. Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4(8):a015354. doi: 10.1101/cshperspect.a015354
  36. Harden JL, Krueger JG, Bowcock AM. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun. 2015;64:66–73. doi: 10.1016/j.jaut.2015.07.008
  37. Morizane S, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 2012;39(3):225–230. doi: 10.1111/j.1346-8138.2011.01483.x
  38. Morizane S, Yamasaki K, Mühleisen B, et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol. 2012;132(1): 135–143. doi: 10.1038/jid.2011.259
  39. Peltonen S, Riehokainen J, Pummi K, Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis. Br J Dermatol. 2007;156:466–472. doi: 10.1111/j.1365-2133.2006.07642.x
  40. Kirschner N, Poetzl C, von den Driesch P, et al. Alteration of tight junction proteins is an early event in psoriasis: putative involvement of proinflammatory cytokines. Am J Pathol. 2009;175(3):1095–1106. doi: 10.2353/ajpath.2009.080973
  41. Visconti B, Paolino G, Carotti S, et al. Immunohistochemical expression of VDR is associated with reduced integrity of tight junction complex in psoriatic skin. J Eur Acad Dermatol Venereol. 2015;29(10):2038–2042. doi: 10.1111/jdv.12736
  42. Montero-Vilchez T, Segura-Fernández-Nogueras MV, Pérez-Rodríguez I, et al. Skin barrier function in psoriasis and atopic dermatitis: transepidermal water loss and temperature as useful tools to assess disease severity. J Clin Med. 2021;10(2):359. doi: 10.3390/jcm10020359
  43. Gutowska-Owsiak D, Schaupp AL, Salimi M, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21(2): 104–110. doi: 10.1111/j.1600-0625.2011.01412.x
  44. Ten Bergen LL, Petrovic A, Aarebrot AK, Appel S. Current knowledge on autoantigens and autoantibodies in psoriasis. Scand J Immunol. 2020;92(4):e12945. doi: 10.1111/sji.12945
  45. Liang Y, Sarkar MK, Tsoi LC, Gudjonsson JE. Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr Opin Immunol. 2017;49:1–8. doi: 10.1016/j.coi.2017.07.007
  46. Orsmond A, Bereza-Malcolm L, Lynch T, et al. Skin barrier dysregulation in psoriasis. Int J Mol Sci. 2021;22(19):10841. doi: 10.3390/ijms221910841
  47. Johnston A, Gudjonsson JE, Sigmundsdottir H, et al. Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8(+) T cells. Clin Exp Immunol. 2004;138(1):83–93. doi: 10.1111/j.1365-2249.2004.00600.x
  48. Cheung KL, Jarrett R, Subramaniam S, et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med. 2016;213(11):2399–2412. doi: 10.1084/jem.20160258
  49. Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides. 2010;31(9):1791–1798. doi: 10.1016/j.peptides.2010.06.016
  50. Chiba H, Michibata H, Wakimoto K, et al. Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2 delta, induced in psoriatic skin. J Biol Chem. 2004;279(13):12890–12897. doi: 10.1074/jbc.M305801200
  51. Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214(4):516–559. doi: 10.1111/j.1469-7580.2009.01066.x
  52. Besgen P, Trommler P, Vollmer S, Prinz JC. Ezrin, maspin, peroxiredoxin 2, and heat shock protein 27: potential targets of a streptococcal-induced autoimmune response in psoriasis. J Immunol. 2010;184(9):5392–5402. doi: 10.4049/jimmunol.0903520
  53. Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–569. doi: 10.1038/nature06116
  54. Ganguly D, Chamilos G, Lande R, et al. Self-RNAantimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–1994. doi: 10.1084/jem.20090480
  55. Lande R, Botti E, Jandus C, et al. Corrigendum: the antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2015;6:6595. doi: 10.1038/ncomms7595

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Molecular genetic studies of psoriasis.

Download (293KB)
3. Fig. 2. Pathogenetic studies of psoriasis.

Download (211KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86501 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80653 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies