Artificial intelligence application in dermatology
- Authors: Ruksha T.1, Lapkina E.Z.2
-
Affiliations:
- Krasnoyarsk State Medical University
- krasnoyarsk State Medical University
- Section: DERMATOLOGY
- Submitted: 16.04.2025
- Accepted: 01.08.2025
- Published: 22.09.2025
- URL: https://rjsvd.com/1560-9588/article/view/678577
- DOI: https://doi.org/10.17816/dv678577
- ID: 678577
Cite item
Full Text



Abstract
Dermatology is a field of medicine where morphological studies can be applied successfully for skin diseases diagnostics due to easy access and visualization of pathological site. Artificial intelligence was emerged as a powerful instrument in biomedicine where skin diseases can be considered to be one of the most representative subject for it’s application.
Present paper describes results of research data about artificial intelligence technologies adaptation in dermatology. Total 120 research papers were analyzed published between 2020-2025 in accordance to Pubmed database. The survey underlines usefulness of artificial intelligence technologies as a tool for skin cancer diagnostics. Representative number of images is crucial for melanoma diagnostics machine learning and neural network-based tools due to evident heterogeneity of a tumor. Images augmentation can increase efficiency of artificial intelligence based algorithms for atopic dermatitis, alopecia, rosacea, and acne diagnostics. Besides, artificial intelligence can be applied for educational purposes in dermatology professional trainings.
In a meantime patients express concerns about ethical aspects of artificial intelligence integration into clinical workflow that allows to consider this approach as innovative but additional tool for medical practice.
Full Text

About the authors
Tatiana Ruksha
Krasnoyarsk State Medical University
Author for correspondence.
Email: tatyana_ruksha@mail.ru
ORCID iD: 0000-0001-8142-4283
professor, head of pathophysiology department
Russian Federation, Krasnoyarsk, P. Zeleznyak str., 1Ekaterina Ziyadkhanovna Lapkina
krasnoyarsk State Medical University
Email: e.z.lapkina@mail.ru
ORCID iD: 0000-0002-7226-9565
Ass. professor of Pathophysiology Dept.
Russian Federation, Krasnoyarsk, P. Zeleznyaka str., 1References
- Stanton R. B. Artificial Intelligence // Nature. 1971. Vol. 234. P. 279–280. doi: 10.1038/234279b0
- Wang H., Fu T., Du Y. et al. Scientific discovery in the age of artificial intelligence // Nature. 2023 Aug. Vol. 620, N. 7972. P. 47–60. doi: 10.1038/s41586-023-06221-2
- Shanahan M., McDonell K., Reynolds L. Role play with large language models // Nature. 2023. Vol. 623, N. 7987. P. 493–498. doi: 10.1038/s41586-023-06647-8
- Feng J., Wang Q., Qiu H., Liu L. Retrieval In Decoder benefits generative models for explainable complex question answering // Neural Netw. 2025 Jan. Vol. 181. P. 106833. doi: 10.1016/j.neunet.2024.106833
- Ananthaswamy А. How close is AI to human-level intelligence? // Nature. 2024 Dec. Vol. 636, N. 8041. P. 22-25. doi: 10.1038/d41586-024-03905-1.
- Zhang M., Yang Q., Lou J., et al. A new strategy to HER2-specific antibody discovery through artificial intelligence-powered phage display screening based on the Trastuzumab framework // Biochim Biophys Acta Mol Basis Dis. 2025 Mar 7, Vol. 1871, N. 5. P. 167772. doi: 10.1016/j.bbadis.2025.167772
- King А. Four ways to power-up AI for drug discovery // Nature. 2025 Feb 27. doi: 10.1038/d41586-025-00602-5
- Nordmann T.M., Anderton H., Hasegawa A. et al. Spatial proteomics identifies JAKi as treatment for a lethal skin disease // Nature. 2024 Nov. Vol. 635, N. 8040. P. 1001–1009. doi: 10.1038/s41586-024-08061-0
- Modiri O., Ebriani J., Davis J. Can AI models assist patients in screening for non-melanoma skin cancer? Evaluating diagnostic accuracy of ChatGPT and Gemini using clinical images // Arch Dermatol Res. 2025 Mar 12. Vol. 317, N. 1. P. 555. doi: 10.1007/s00403-025-04062-9
- Mudhar H.S., Milman T., Stevenson S., et al. PRAME expression by immunohistochemistry and reverse transcription quantitative PCR in conjunctival melanocytic lesions-a comprehensive clinicopathologic study of 202 cases and correlation of cytogenetics with PRAME expression in challenging conjunctival melanocytic lesions // Hum Pathol. 2023 Apr. Vol. 134. P. 1-18. doi: 10.1016/j.humpath.2023.02.002
- Cui Y., Li Y., Miedema J.R., Edmiston S.N., Farag S.W., Marron J.S., Thomas N.E. Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images-Nevus and Melanoma. Cancers (Basel). 2024;16(15):2616. doi: 10.3390/cancers16152616
- Maher N.G., Danaei Mehr H., Cong C., Adegoke N.A., Vergara I.A., Liu S., Scolyer R.A. Weakly supervised deep learning image analysis can differentiate melanoma from naevi on haematoxylin and eosin-stained histopathology slides. J Eur Acad Dermatol Venereol. 2024;38(12):2250-2258. doi: 10.1111/jdv.20307
- Esimbekova A.R., Palkina N.V., Zinchenko I.S., et al. Focal adhesion alterations in G0-positive melanoma cells // Cancer Med. 2023 Mar. Vol. 12, N. 6. P. 7294-7308. doi: 10.1002/cam4.5510
- Komina A.V., Palkina N.V., Aksenenko M.B., et al. Semaphorin-5A downregulation is associated with enhanced migration and invasion of BRAF-positive melanoma cells under vemurafenib treatment in melanomas with heterogeneous BRAF status // Melanoma Res. 2019 Oct. Vol. 29, N. 5. P. 544-548. doi: 10.1097/CMR.0000000000000621
- Azimi A., Bi L., Bonfil A., Teh R., et al. Integrated analysis of proteomic and dermoscopy imaging data improves non-invasive classification of benign nevi and melanoma // J Invest Dermatol. 2025 Feb 13:S0022-202X(25)00102-2. doi: 10.1016/j.jid.2025.01.022
- Kuppanda P.M., Janda M., Soyer H.P., Caffery L.J. What Are Patients' Perceptions and Attitudes Regarding the Use of Artificial Intelligence in Skin Cancer Screening and Diagnosis? Narrative Review // J Invest Dermatol. 2025 Feb 27:S0022-202X(25)00080-6. doi: 10.1016/j.jid.2025.01.013
- Kimball A.B., Jemec G.B.E., Alavi A., et al. Secukinumab in moderate-to-severe hidradenitis suppurativa (SUNSHINE and SUNRISE): week 16 and week 52 results of two identical, multicentre, randomised, placebo-controlled, double-blind phase 3 trials // Lancet. 2023 Mar 4. Vol. 401, N. 10378. P. 747–761. doi: 10.1016/S0140-6736(23)00022-3
- Demirel Öğüt N., Ayanoğlu M.A., Koç Yıldırım S., et al. Are IL-17 inhibitors superior to IL-23 inhibitors in reducing systemic inflammation in moderate-to-severe plaque psoriasis? A retrospective cohort study // Arch Dermatol Res. 2025 Jan 13. Vol. 317, N. 1. P. 232. doi: 10.1007/s00403-024-03768-6
- Zhang Y., Qian H., Kuang Y.H., et al. Evaluation of the inflammatory parameters as potential biomarkers of systemic inflammation extent and the disease severity in psoriasis patients // Arch Dermatol Res. 2024 May 24. Vol. 316, N. 6. P. 229. doi: 10.1007/s00403-024-02972-8
- Hawro M., Sahin E., Steć M., et al. A comprehensive, tri-national, cross-sectional analysis of characteristics and impact of pruritus in psoriasis // J Eur Acad Dermatol Venereol. 2022 Nov. Vol. 36, N. 11. P. 2064-2075. doi: 10.1111/jdv.18330
- Aggarwal S.L.P. Data augmentation in dermatology image recognition using machine learning // Skin Res Technol. 2019 Nov. Vol. 25, N. 6. P. 815-820. doi: 10.1111/srt.12726
- Greenfield D.A., Feizpour A., Evans C.L. Quantifying Inflammatory Response and Drug-Aided Resolution in an Atopic Dermatitis Model with Deep Learning // J Invest Dermatol. 2023 Aug. Vol. 143, N. 8. P. 1430-1438. doi: 10.1016/j.jid.2023.01.026
- Eskandari A., Sharbatdar M. Efficient diagnosis of psoriasis and lichen planus cutaneous diseases using deep learning approach // Sci Rep. 2024 Apr 27. Vol. 14, N. 1. P. 9715. doi: 10.1038/s41598-024-60526-4
- Achararit P., Manaspon C., Jongwannasiri C., et al. Artificial Intelligence-Based Diagnosis of Oral Lichen Planus Using Deep Convolutional Neural Networks // Eur J Dent. 2023 Oct. Vol. 17, N. 4. P. 1275-1282. doi: 10.1055/s-0042-1760300
- Kaya G., Tak A.Y. Evaluation of SALT score severity in correlation with trichoscopic findings in alopecia areata: a study of 303 patients // Arch Dermatol Res. 2025 Mar 7/ Vol. 317, N. 1. P. 523. doi: 10.1007/s00403-025-04026-z
- Bhardwaj V., Rodgers N., Harth O., Harth Y. Artificial Intelligence-Based Personalization of Treatment Regimen for Hair Loss: A 6-Month Clinical Trial // J Drugs Dermatol. 2025 Mar 1. Vol. 24, N. 3. P. 233-238. doi: 10.36849/JDD.8611
- Dorado Cortez C., Fakih A., Bruet M., et al. Impact of dermoscopy training associated with artificial intelligence on general practitioner residents // J Eur Acad Dermatol Venereol. 2024 Dec. Vol. 38, N. 12. P. 2323-2325. doi: 10.1111/jdv.20328
- Khawaja Z., Adhoni M.Z.U., Byrnes K.G. Generative artificial intelligence powered chatbots in urology // Curr Opin Urol. 2025 Mar 19. doi: 10.1097/MOU.0000000000001280
- Anil Ananthaswamy How close is AI to human-level intelligence? Nature. 2024;636(8041):22-25. doi: 10.1038/d41586-024-03905-1.
- Villalobos P., Ho A., Sevilla J. et al. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.04325 (2024).
- Muñoz J.M., Bernacer J., Noë A., Thompson E. Why AI will never be able to acquire human-level intelligence // Nature. 2025 Jan. Vol. 637, N. 8047. P. 794. doi: 10.1038/d41586-025-00170-8.
Supplementary files
