Local Quench within the Keldysh Technique

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of quantum scalar field evolution after an instantaneous local perturbation (quench) is considered. A new approach to descriptions of a quench from an arbitrary initial state is developed in the framework of the Keldysh technique. This approach does not require the procedure of the analytical continuation, which can be ambiguous in some cases. The evolution of the energy density after local quench is calculated for a simple case, and its dependence on the interaction region width and the initial conditions is analyzed.

作者简介

A. Radovskaya

Lebedev Physical Institute, Russian Academy of Sciences

Email: raan@lpi.ru
119991, Moscow, Russia

A. Semenov

Skolkovo Institute of Science and Technology

编辑信件的主要联系方式.
Email: raan@lpi.ru
121205, Moscow, Russia

参考

  1. J. Berges, arXiv:1503.02907.
  2. P.Ruggiero, P. Calabrese, T. Giamarchi, and L. Foini, SciPost Phys. 13, 111 (2022).
  3. P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P06008 (2007).
  4. P. Calabrese and J. Cardy, J. Stat. Mech. 2016, 064003 (2016).
  5. S. Sotiriadis, P. Calabrese, and J. Cardy, Europhys. Lett. 87, 20002 (2009).
  6. S. Sotiriadis and J. Cardy, Phys. Rev. B 81, 134305 (2010).
  7. S. R. Das, D. A. Galante, and R. C. Myers, J. High Energ. Phys. 2015, 73 (2015).
  8. S. R. Das, D. A. Galante, and R. C. Myers, J. High Energ. Phys. 2016, 164 (2016).
  9. D. Sz'asz-Schagrin, I. Lovas, and G. Tak'acs, Phys. Rev. B 105, 014305 (2022).
  10. D. S. Ageev, A. I. Belokon, and V. V. Pushkarev, J. High Energ. Phys. 2023, 188 (2023).
  11. D. Horvath, S. Sotiriadis, M. Kormos, and G. Takacs, SciPost Phys. 12, 144 (2022).
  12. M. Nozaki, T. Numasawa, and T. Takayanagi, Phys. Rev. Lett. 112, 111602 (2014).
  13. P. Caputa, J. Sim'on, A. Sˇtikonas, and T. Takayanagi, J. High Energ. Phys. 2015, 102 (2015).
  14. P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P10004 (2007).
  15. L. V. Keldysh, ZhETF 47, 1515 (1964)
  16. Sov. Phys. JETP 20, 1018 (1965).
  17. J. Schwinger, J. Math. Phys. 3, 2 (1961).
  18. П. И. Арсеев, Успехи физических наук 185, 1271 (2015).
  19. A. V. Leonidov and A. A. Radovskaya, Pis'ma v ZhETF 101, 235 (2015).
  20. A. V. Leonidov and A. A. Radovskaya, Eur. Phys. J. C 79, 55 (2019).
  21. A. A. Radovskaya and A. G. Semenov, Eur. Phys. J. C 81, 704 (2021).
  22. Н. Н. Боголюбов, Д. В. Ширков, Квантовые поля, 5-е изд., Физматлит, М. (2005)
  23. N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Addison-Wesley, London (1983).
  24. G. Mussardo, Statistical eld theory: an introduction to exactly solved models in statistical physics, Oxford University Press, USA (2010).
  25. G. Del no and M. Sorba, Nucl. Phys. B 974, 115643 (2022).
  26. P. Caputa, M. Nozaki, and T. Takayanagi, Prog. Theor. Exp. Phys. 2014, 093B06 (2014).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023