Local Quench within the Keldysh Technique
- Authors: Radovskaya A.A.1, Semenov A.G.2
-
Affiliations:
- Lebedev Physical Institute, Russian Academy of Sciences
- Skolkovo Institute of Science and Technology
- Issue: Vol 118, No 11-12 (12) (2023)
- Pages: 921-927
- Section: Articles
- URL: https://rjsvd.com/0370-274X/article/view/664213
- DOI: https://doi.org/10.31857/S1234567823240096
- EDN: https://elibrary.ru/NMCNMX
- ID: 664213
Cite item
Abstract
The problem of quantum scalar field evolution after an instantaneous local perturbation (quench) is considered. A new approach to descriptions of a quench from an arbitrary initial state is developed in the framework of the Keldysh technique. This approach does not require the procedure of the analytical continuation, which can be ambiguous in some cases. The evolution of the energy density after local quench is calculated for a simple case, and its dependence on the interaction region width and the initial conditions is analyzed.
About the authors
A. A. Radovskaya
Lebedev Physical Institute, Russian Academy of Sciences
Email: raan@lpi.ru
119991, Moscow, Russia
A. G. Semenov
Skolkovo Institute of Science and Technology
Author for correspondence.
Email: raan@lpi.ru
121205, Moscow, Russia
References
- J. Berges, arXiv:1503.02907.
- P.Ruggiero, P. Calabrese, T. Giamarchi, and L. Foini, SciPost Phys. 13, 111 (2022).
- P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P06008 (2007).
- P. Calabrese and J. Cardy, J. Stat. Mech. 2016, 064003 (2016).
- S. Sotiriadis, P. Calabrese, and J. Cardy, Europhys. Lett. 87, 20002 (2009).
- S. Sotiriadis and J. Cardy, Phys. Rev. B 81, 134305 (2010).
- S. R. Das, D. A. Galante, and R. C. Myers, J. High Energ. Phys. 2015, 73 (2015).
- S. R. Das, D. A. Galante, and R. C. Myers, J. High Energ. Phys. 2016, 164 (2016).
- D. Sz'asz-Schagrin, I. Lovas, and G. Tak'acs, Phys. Rev. B 105, 014305 (2022).
- D. S. Ageev, A. I. Belokon, and V. V. Pushkarev, J. High Energ. Phys. 2023, 188 (2023).
- D. Horvath, S. Sotiriadis, M. Kormos, and G. Takacs, SciPost Phys. 12, 144 (2022).
- M. Nozaki, T. Numasawa, and T. Takayanagi, Phys. Rev. Lett. 112, 111602 (2014).
- P. Caputa, J. Sim'on, A. Sˇtikonas, and T. Takayanagi, J. High Energ. Phys. 2015, 102 (2015).
- P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P10004 (2007).
- L. V. Keldysh, ZhETF 47, 1515 (1964)
- Sov. Phys. JETP 20, 1018 (1965).
- J. Schwinger, J. Math. Phys. 3, 2 (1961).
- П. И. Арсеев, Успехи физических наук 185, 1271 (2015).
- A. V. Leonidov and A. A. Radovskaya, Pis'ma v ZhETF 101, 235 (2015).
- A. V. Leonidov and A. A. Radovskaya, Eur. Phys. J. C 79, 55 (2019).
- A. A. Radovskaya and A. G. Semenov, Eur. Phys. J. C 81, 704 (2021).
- Н. Н. Боголюбов, Д. В. Ширков, Квантовые поля, 5-е изд., Физматлит, М. (2005)
- N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Addison-Wesley, London (1983).
- G. Mussardo, Statistical eld theory: an introduction to exactly solved models in statistical physics, Oxford University Press, USA (2010).
- G. Del no and M. Sorba, Nucl. Phys. B 974, 115643 (2022).
- P. Caputa, M. Nozaki, and T. Takayanagi, Prog. Theor. Exp. Phys. 2014, 093B06 (2014).
Supplementary files
