Local Quench within the Keldysh Technique

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of quantum scalar field evolution after an instantaneous local perturbation (quench) is considered. A new approach to descriptions of a quench from an arbitrary initial state is developed in the framework of the Keldysh technique. This approach does not require the procedure of the analytical continuation, which can be ambiguous in some cases. The evolution of the energy density after local quench is calculated for a simple case, and its dependence on the interaction region width and the initial conditions is analyzed.

About the authors

A. A. Radovskaya

Lebedev Physical Institute, Russian Academy of Sciences

Email: raan@lpi.ru
119991, Moscow, Russia

A. G. Semenov

Skolkovo Institute of Science and Technology

Author for correspondence.
Email: raan@lpi.ru
121205, Moscow, Russia

References

  1. J. Berges, arXiv:1503.02907.
  2. P.Ruggiero, P. Calabrese, T. Giamarchi, and L. Foini, SciPost Phys. 13, 111 (2022).
  3. P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P06008 (2007).
  4. P. Calabrese and J. Cardy, J. Stat. Mech. 2016, 064003 (2016).
  5. S. Sotiriadis, P. Calabrese, and J. Cardy, Europhys. Lett. 87, 20002 (2009).
  6. S. Sotiriadis and J. Cardy, Phys. Rev. B 81, 134305 (2010).
  7. S. R. Das, D. A. Galante, and R. C. Myers, J. High Energ. Phys. 2015, 73 (2015).
  8. S. R. Das, D. A. Galante, and R. C. Myers, J. High Energ. Phys. 2016, 164 (2016).
  9. D. Sz'asz-Schagrin, I. Lovas, and G. Tak'acs, Phys. Rev. B 105, 014305 (2022).
  10. D. S. Ageev, A. I. Belokon, and V. V. Pushkarev, J. High Energ. Phys. 2023, 188 (2023).
  11. D. Horvath, S. Sotiriadis, M. Kormos, and G. Takacs, SciPost Phys. 12, 144 (2022).
  12. M. Nozaki, T. Numasawa, and T. Takayanagi, Phys. Rev. Lett. 112, 111602 (2014).
  13. P. Caputa, J. Sim'on, A. Sˇtikonas, and T. Takayanagi, J. High Energ. Phys. 2015, 102 (2015).
  14. P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P10004 (2007).
  15. L. V. Keldysh, ZhETF 47, 1515 (1964)
  16. Sov. Phys. JETP 20, 1018 (1965).
  17. J. Schwinger, J. Math. Phys. 3, 2 (1961).
  18. П. И. Арсеев, Успехи физических наук 185, 1271 (2015).
  19. A. V. Leonidov and A. A. Radovskaya, Pis'ma v ZhETF 101, 235 (2015).
  20. A. V. Leonidov and A. A. Radovskaya, Eur. Phys. J. C 79, 55 (2019).
  21. A. A. Radovskaya and A. G. Semenov, Eur. Phys. J. C 81, 704 (2021).
  22. Н. Н. Боголюбов, Д. В. Ширков, Квантовые поля, 5-е изд., Физматлит, М. (2005)
  23. N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Addison-Wesley, London (1983).
  24. G. Mussardo, Statistical eld theory: an introduction to exactly solved models in statistical physics, Oxford University Press, USA (2010).
  25. G. Del no and M. Sorba, Nucl. Phys. B 974, 115643 (2022).
  26. P. Caputa, M. Nozaki, and T. Takayanagi, Prog. Theor. Exp. Phys. 2014, 093B06 (2014).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук