Logarithmic Relaxation of the Nonequilibrium State of the Charge Density Wave in TbTe3 and HoTe3 Compounds

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The measurements of electronic transport including the dynamic properties of the charge density wave (CDW) in the quasi-two-dimensional compound HoTe3 have been performed. The effects of the slow relaxation of the nonequilibrium state of the CDW during isothermal exposure in the zero current mode, previously observed in TbTe3, have been discovered and studied. A significant increase in the exposure time made it possible to clearly demonstrate that the relaxation is logarithmic. Relaxation features were studied in different temperature and time ranges. The data obtained indicate the glassy behavior of the CDW pinning centers in rare-earth tritellurides.

Авторлар туралы

A. Frolov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: fralek@mail.ru
125009, Moscow, Russia

A. Orlov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences; Institute of Nanotechnology of Microelectronics of Russian Academy of Sciences

Email: fralek@mail.ru
125009, Moscow, Russia; 115487, Moscow, Russia

D. Voropaev

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Search University)

Email: fralek@mail.ru
125009, Moscow, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

A. Khadzh-azzem

Universté Grenoble Alpes, CNRS, Grenoble INP, Institut Néel

Email: fralek@mail.ru
38042, Grenoble, France

A. Sinchenko

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: fralek@mail.ru
125009, Moscow, Russia

P. Monso

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: fralek@mail.ru
125009, Moscow, Russia

Әдебиет тізімі

  1. G. Gru�ner, Rev. Mod. Phys. 60, 1129 (1988).
  2. P. Monceau, Adv. Phys. 61, 325 (2012).
  3. X. Zhu, Y. Cao, J. Zhang, E. W. Plummer, and J. Guo, Proceedings of the National Academy of Sciences 112, 2367 (2015).
  4. D. A. Zocco, J. J. Hamlin, K. Grube, J.-H. Chu, H.-H. Kuo, I. R. Fisher, and M. B. Maple, Phys. Rev. B 91, 205114 (2015).
  5. J. J. Hamlin, D. A. Zocco, T. A. Sayles, M. B. Maple, J. H. Chu, and I. R. Fisher, Phys. Rev. Lett. 102, 177002 (2009).
  6. E. DiMasi, M. C. Aronson, J. F. Mans eld, B. Foran, and S. Lee, Phys. Rev. B 52, 14516 (1995).
  7. N.Ru, C. L. Condron, G. Y. Margulis, K. Y. Shin, J. Laverock, S. B. Dugdale, M. F. Toney, and I. R. Fisher, Phys. Rev. B 77, 035114 (2008).
  8. Y. Iyeiri, T. Okumura, C. Michioka, and K. Suzuki, Phys. Rev. B 67, 144417 (2003).
  9. N.Ru, J.-H. Chu, and I. R. Fisher, Phys. Rev. B 78, 012410 (2008).
  10. E. A. Nowadnick, S. Johnston, B. Moritz, R. T. Scalettar, and T. P. Devereaux, Phys. Rev. Lett. 109, 246404 (2012).
  11. B. F. Hu, B. Cheng, R. H. Yuan, T. Dong, and N. L. Wang, Phys. Rev. B 90, 085105 (2014).
  12. A. A. Sinchenko, P. Lejay, and P. Monceau, Phys. Rev. B 85, 241104 (2012).
  13. A. Sinchenko, P. Lejay, O. Leynaud, and P. Monceau, Solid State Commun. 188, 67 (2014).
  14. A. A. Sinchenko, P. Lejay, O. Leynaud, and P. Monceau, Phys. Rev. B 93, 235141 (2016).
  15. A. V. Frolov, A. P. Orlov, A. A. Sinchenko, and P. Monceau, JETP Lett. 109, 203 (2019).
  16. A. V. Frolov, A. P. Orlov, A. Hadj-Azzem, P. Lejay, A. A. Sinchenko, and P. Monceau, Phys. Rev. B 101, 155144 (2020).
  17. A. V. Frolov, A. P. Orlov, D. M. Voropaev, A. Hadj-Azzem, A. A. Sinchenko, and P. Monceau, Appl. Phys. Lett. 118, 253102 (2021).
  18. A. Frolov, A. Orlov, D. Voropaev, V. Shakhunov, A. Sinchenko, and P. Monceau, in 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Xi'an, China, IEEE (2021), p. 457.
  19. A. Banerjee, Y. Feng, D. M. Silevitch, J. Wang, J. C. Lang, H.-H. Kuo, I. R. Fisher, and T. F. Rosenbaum, Phys. Rev. B 87, 155131 (2013).
  20. A. V. Frolov, A. P. Orlov, P. D. Grigoriev, V. N. Zverev, A. A. Sinchenko, and P. Monceau, JETP Lett. 107, 488 (2018).
  21. V. E. Minakova, A. M. Nikitina, and S. V. Zaitsev-Zotov, JETP Lett. 110, 62 (2019).
  22. V. E. Minakova, A. M. Nikitina, and S. V. Zaitsev-Zotov, JETP Lett. 112, 346 (2020).
  23. M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
  24. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
  25. A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. Lett. 84, 3402 (2000).
  26. E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg, Phys. Rev. Lett. 88, 158101 (2002).
  27. K. Bu�ntemeyer, H. Lu�then, and M. B�ottger, Planta 204, 515 (1998).
  28. G. Buzs'aki and K. Mizuseki, Nat. Rev. Neurosci. 15, 264 (2014).
  29. V. S. Dotsenko, Phys.-Uspekhi 36, 455 (1993).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Российская академия наук, 2023