Motion of a thin layer of magnetic fluid near a magnetizing body in a homogeneous magnetic field

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The flow of a thin layer of a magnetic fluid along a horizontal plane near an fixed magnetizable cylindrical body in an applied uniform vertical magnetic field were investigated theoretically and experimentally. The shapes of the surface of the magnetic fluid at different times were plotted. The influence of the applied field on the flow of the layer was studied.

全文:

受限制的访问

作者简介

O. Sharova

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: olgasharova96@mail.ru
俄罗斯联邦, Moscow

D. Pelevina

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
俄罗斯联邦, Moscow

V. Naletova

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
俄罗斯联邦, Moscow

参考

  1. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  2. Белых С.С., Ерин К.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 962; Belykh S.S., Yerin C.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 878.
  3. Nguyen N.T. // Microfluid. Nanofluid. 2012. V. 12. P. 1.
  4. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  5. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 300.
  6. Jiahao Dong, Decai Li, Zhenkun Li // JMMM. 2022. V. 557. Art. No. 169453.
  7. Shmyrov A., Mizev A., Shmyrova A., Mizeva I. // Phys. Fluids. 2019. V. 31. Art. No. 12101.
  8. Калмыков С.А., Налетова В.А., Пелевина Д.А., Турков В.А. // Изв. РАН. МЖГ. 2013. № 5. С. 3; Kalmykov S.A., Naletova V.A., Pelevina D.A., Turkov V.A. // Fluid Dynamics. 2013. V. 48. No. 5. P. 567.
  9. Needham D.J., Merkin J.H. // J. Fluid Mech. 1987. V. 184. P. 357.
  10. Naletova V.A., Kim L.G., Turkov V.A. // JMMM. 1995. V. 149. P. 162.
  11. Naletova V.A., Turkov V.A. // JMMM. 1999. V. 201. P. 346.
  12. Тятюшкин А.Н. // Изв. РАН. МЖГ. 2019. № 4. С. 27; Tyatyushkin A.N. // Fluid Dynamics. 2019. V. 54. No. 4. P. 466.
  13. Коровин В.М., Райхер Ю.Л. // Магнитная гидродинамика. 1987. № 1. С. 49.
  14. Zhu S., Bian Yu., Wu T. et al. // Nano Lett. 2020. V. 20. No. 7. P. 5513.
  15. Sharova O.A., Merkulov D.I., Pelevina D.A. et al. // Phys. Fluids. 2021. V. 33. No. 8. Art. No. 087107.
  16. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Flow of magnetic fluid near a cylindrical body, side view: diagram (a); photographs of the experiment (b) at different moments of time t at H∞ = 450 Oe, l = 1.4 cm. 1 — magnetizing body, 2 — layer of magnetic fluid, 3 — hole for draining liquid.

下载 (125KB)
3. Fig. 2. Forms of the MF layer at different moments of time t at H∞ = 400 Oe: experiment l = 4.54 cm (a); calculation for experimental parameters (b).

下载 (166KB)
4. Fig. 3. Dependence of the depth in layer h on time t in section x=0.6 cm for fields 1 — H∞ = 200 Oe, 2 — H∞ = 300 Oe, 3 — H∞ = 400 Oe: experiment (a) and calculation (b).

下载 (79KB)
5. Fig. 4. Dependence of the function F on x at H∞ = 400 Oe (a) for different values ​​of zb: 1 — zb = 0.5 cm, 2 — zb = 0.6 cm; magnetic field isolines (b): in region I the field is greater than the applied one: H > H∞, and in region II the field is less than the applied one: H < H∞; 1 — H = 1.22∙H∞, 2 — H = 1.11∙H∞, 3 — H = 1.07∙H∞, 4 — H = H∞, 5 — H = 0.96∙H∞, 6 — H = 0.92∙H∞, 7 — H = 0.84∙H∞, 8 — z = h0.

下载 (102KB)

版权所有 © Russian Academy of Sciences, 2024