Motion of a thin layer of magnetic fluid near a magnetizing body in a homogeneous magnetic field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The flow of a thin layer of a magnetic fluid along a horizontal plane near an fixed magnetizable cylindrical body in an applied uniform vertical magnetic field were investigated theoretically and experimentally. The shapes of the surface of the magnetic fluid at different times were plotted. The influence of the applied field on the flow of the layer was studied.

Full Text

Restricted Access

About the authors

O. A. Sharova

Lomonosov Moscow State University

Author for correspondence.
Email: olgasharova96@mail.ru
Russian Federation, Moscow

D. A. Pelevina

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
Russian Federation, Moscow

V. A. Naletova

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
Russian Federation, Moscow

References

  1. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  2. Белых С.С., Ерин К.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 962; Belykh S.S., Yerin C.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 878.
  3. Nguyen N.T. // Microfluid. Nanofluid. 2012. V. 12. P. 1.
  4. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  5. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 300.
  6. Jiahao Dong, Decai Li, Zhenkun Li // JMMM. 2022. V. 557. Art. No. 169453.
  7. Shmyrov A., Mizev A., Shmyrova A., Mizeva I. // Phys. Fluids. 2019. V. 31. Art. No. 12101.
  8. Калмыков С.А., Налетова В.А., Пелевина Д.А., Турков В.А. // Изв. РАН. МЖГ. 2013. № 5. С. 3; Kalmykov S.A., Naletova V.A., Pelevina D.A., Turkov V.A. // Fluid Dynamics. 2013. V. 48. No. 5. P. 567.
  9. Needham D.J., Merkin J.H. // J. Fluid Mech. 1987. V. 184. P. 357.
  10. Naletova V.A., Kim L.G., Turkov V.A. // JMMM. 1995. V. 149. P. 162.
  11. Naletova V.A., Turkov V.A. // JMMM. 1999. V. 201. P. 346.
  12. Тятюшкин А.Н. // Изв. РАН. МЖГ. 2019. № 4. С. 27; Tyatyushkin A.N. // Fluid Dynamics. 2019. V. 54. No. 4. P. 466.
  13. Коровин В.М., Райхер Ю.Л. // Магнитная гидродинамика. 1987. № 1. С. 49.
  14. Zhu S., Bian Yu., Wu T. et al. // Nano Lett. 2020. V. 20. No. 7. P. 5513.
  15. Sharova O.A., Merkulov D.I., Pelevina D.A. et al. // Phys. Fluids. 2021. V. 33. No. 8. Art. No. 087107.
  16. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Flow of magnetic fluid near a cylindrical body, side view: diagram (a); photographs of the experiment (b) at different moments of time t at H∞ = 450 Oe, l = 1.4 cm. 1 — magnetizing body, 2 — layer of magnetic fluid, 3 — hole for draining liquid.

Download (125KB)
3. Fig. 2. Forms of the MF layer at different moments of time t at H∞ = 400 Oe: experiment l = 4.54 cm (a); calculation for experimental parameters (b).

Download (166KB)
4. Fig. 3. Dependence of the depth in layer h on time t in section x=0.6 cm for fields 1 — H∞ = 200 Oe, 2 — H∞ = 300 Oe, 3 — H∞ = 400 Oe: experiment (a) and calculation (b).

Download (79KB)
5. Fig. 4. Dependence of the function F on x at H∞ = 400 Oe (a) for different values ​​of zb: 1 — zb = 0.5 cm, 2 — zb = 0.6 cm; magnetic field isolines (b): in region I the field is greater than the applied one: H > H∞, and in region II the field is less than the applied one: H < H∞; 1 — H = 1.22∙H∞, 2 — H = 1.11∙H∞, 3 — H = 1.07∙H∞, 4 — H = H∞, 5 — H = 0.96∙H∞, 6 — H = 0.92∙H∞, 7 — H = 0.84∙H∞, 8 — z = h0.

Download (102KB)

Copyright (c) 2024 Russian Academy of Sciences