Influence of annealing on the lateral homogeneity of Ti/InAlAs Schottky barriers
- Autores: Genze I.Y.1,2, Aksenov M.S.1,2, Dmitriev D.V.1
-
Afiliações:
- Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk National Research State University
- Edição: Volume 88, Nº 9 (2024)
- Páginas: 1473-1477
- Seção: Quantum Optics and Quantum Technologies
- URL: https://rjsvd.com/0367-6765/article/view/681835
- DOI: https://doi.org/10.31857/S0367676524090209
- EDN: https://elibrary.ru/OCQTIC
- ID: 681835
Citar
Resumo
The influence of temperature (300–450 °C) and time (0–20 min) of annealing on the parameters (barrier height, ideality coefficient) and homogeneity of Au/Pt/Ti/i(n)-In0.52Al0.48As(001) Schottky barriers was studied. The homogeneity of the Schottky barriers was determined by analyzing the temperature dependences of the parameters in the range of 80–350 K, as well as Richardson plots within the framework of the Tung model.
Palavras-chave
Texto integral

Sobre autores
I. Genze
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University
Autor responsável pela correspondência
Email: genze@isp.nsc.ru
Rússia, Novosibirsk; Novosibirsk
M. Aksenov
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University
Email: genze@isp.nsc.ru
Rússia, Novosibirsk; Novosibirsk
D. Dmitriev
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences
Email: genze@isp.nsc.ru
Rússia, Novosibirsk
Bibliografia
- Тakahashi T., Kawano Y., Makiyama K. et al. // IEEE Trans. Electron Devices. 2017. V. 64. No. 1. P. 89.
- Чиж А.Л., Микитчук К.Б., Журавлев К.С. и др. // Письма в ЖТФ. 2019. T. 45. № 14. C. 52; Chizh A.L., Mikitchuk K.B., Zhuravlev K.S. et al. // Tech. Phys. Lett. 2019. V. 45. P. 739.
- Сhistokhin I.B., Aksenov M.S., Valisheva N.A. et al. // Mater. Sci. Semicond. Process. 2018. V. 74. P. 193.
- Rhoderick E.H., Williams R.H. Metal-semiconductor contacts. Oxford: Clarendon Press, 1988. P. 57.
- Тung R.T. // Phys. Rev. B. 1992. V. 45. No. 23. Art. No. 13509.
- Gammon P.M., Pérez-Tomás A., Shah V. A. et al. // J. Appl. Phys. 2013. V. 114. No. 22. Art. No. 223704.
- Чистохин И.Б., Аксенов М.С., Валишева Н.А. и др. // Письма в ЖТФ. 2019. T. 45. № 4. C. 59, Сhistokhin I. B., Aksenov M. S., Valisheva N. A. et al. // Tech. Phys. Lett. 2019. V. 45. No 2. P. 180.
- Dmitriev D.V., Valisheva N.A., Gilinsky A.M. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2019. V. 475. Art. No. 012022.
- Wang L., Adesida I. // Appl. Phys. Lett. 2007. V. 91. No. 2. Art. No. 022110.
- Aksenov M.S., Genze I.Yu., Chistokhin I.B. et al. // Surf. Interfaces. 2023. V. 39. Art. No. 102920.
- Korucu D., Turut A. // Int. J. Electron. 2014. V. 101. No. 11. P. 1595.
- Helal H., Benamara Z., Comini E. et al. // Eur. Phys. J. Plus. 2022. V. 137. No. 4. Art. No. 450.
- Özdemir A.F., Göksu T., Yıldırım N., Turut A. // Phys. B. Cond. Matter. 2021. V. 616. No. 1. Art. No. 413125.
- Jabbari I., Baira M., Maaref H., Mghaieth R. // Chin. J. Phys. 2021. V. 73. P. 719.
Arquivos suplementares
