Electroconductivity of silicone-based elastomer filled with magnetically hard particles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Silicone-based elastomer containing Nd-Fe-B-alloy particles garnished with a small portion of nickel grains has been studied for the capability to conduct alternating current. The observations suggest that the presence of nickel expands the variation range of the conductivity and magnetocapacitance in external magnetic fields. In addition, the composite demonstrates the memory of primary magnetizing manifesting itself as certain specific features of the hysteresis loops depending on the polarity of the external magnetic field.

Texto integral

Acesso é fechado

Sobre autores

A. Bakhtiiarov

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Autor responsável pela correspondência
Email: abakhtia@gmail.com
Rússia, Moscow

G. Stepanov

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Email: abakhtia@gmail.com
Rússia, Moscow

D. Lobanov

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Email: abakhtia@gmail.com
Rússia, Moscow

D. Semerenko

Bauman Moscow State Technical University

Email: abakhtia@gmail.com
Rússia, Moscow

P. Storozhenko

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Email: abakhtia@gmail.com
Rússia, Moscow

Bibliografia

  1. Raikher Yu.L., Stolbov O.V. // J. Magn. Magn. Mater. 2003. V. 258—259. P. 477.
  2. Crippa F., Moore T.L., Mortato M. et al. // J. Magn. Magn. Mater. 2017. V. 427. P. 212.
  3. Gundermann T., Günther S., Borin D., Odenbach S. // J. Phys. Conf. Ser. 2013. V. 412. Art. No. 012027.
  4. Feng J., Xuan S., Ding L., Gong X. // Composites A. 2017. V. 103. P. 25.
  5. Diermeier A., Sindersberger D., Krenkel L. et al. // Open Mech. Eng. J. 2018. V. 12. P. 192.
  6. Nikitin L.V., Stepanov G.V., Mironova L.S., Gorbunov A.I. // J. Magn. Magn. Mater. 2004. V. 272—276. P. 2072.
  7. Lee D., Lee M., Jung N. et al. // Smart Mater. Struct. 2014. V. 23. Art. No. 055017.
  8. Borin D., Stepanov G., Musikhin A. et al. // Polymers. 2020. V. 12. Art. No. 2371.
  9. Borin D.Yu., Stepanov G.V. // J. Optoelectron. Adv. Mater. 2013. V. 15. No. 3—4. P. 249.
  10. Carlson J.D., Jolly M.R. // Mechatronics. 2000. V. 10. P. 555.
  11. Stepanov G., Borin D., Odenbach S. // J. Phys. Conf. Ser. 2009. V. 149. Art. No. 012098.
  12. Kwon S.H., Lee J.H., Choi H.J. // Materials. 2018. V. 11. No. 6. Art. No. 1040.
  13. Böse H., Röder R. Magnetorheological elastomers and use thereof. US Patent No. 7608197, cl. H01F1/447, F16F1/361. 2005.
  14. Stepanov G.V., Borin D. Yu., Raikher Yu.L. et al. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 204121.
  15. Melenev P., Raikher Yu., Stepanov G. et al. // J. Intell. Mater. Syst. Struct. 2011. V. 22. No. 6. P. 531.
  16. Lovšin M., Brandl D., Glavan G. at al. // Polymers. 2021. V. 13. Art. No. 4422.
  17. Urban M., Strankowski M. // Materials. 2017. V. 10. No. 9. Art. No. 1083.
  18. Shevchenko V.G., Stepanov G.V., Kramarenko E.Y. // Polymers. 2021. V. 13. Art. No. 2002.
  19. Dirisamer F., Cakmak U., Marth E., Major Z. // Acta Polytech. CTU Proc. 2016. V. 3. P. 7.
  20. Yu K., Fang N.X., Huang G., Wang Q. // Adv. Mater. 2018. V. 30. No. 21. Art. No. 1706348.
  21. Li Y., Li J., Li W., Samali B. // Smart Mater. Struct. 2013. V. 22. Art. No. 035005.
  22. Semisalova A.S., Perov N.S., Stepanov G.V. et al. // Soft Matter. 2013. V. 9. P. 11318.
  23. Kchit N., Bossis G. // J. Phys.: Cond. Matter. 2008. V. 20. Art. No. 204136.
  24. Ghafoorianfar N., Gordaninejad F. // Proc. SPIE. 2015. V. 9435. Art. No. 94351E.
  25. Ye W.Q., Deng Y.M., Wang W. // Appl. Mech. Mater. 2010. V. 37—38. P. 444.
  26. Xuli Z., Yonggang M., Yu T. // Smart Mater. Struct. 2010. V. 19. Art. No. 117001.
  27. Yu W., Shouhu X., Bo D. et al. // Smart Mater. Struct. 2016. V. 25. Art. No. 025003.
  28. Gundermann Th., Odenbach S. // Smart Mater. Struct. 2014. V. 23. Art. No. 105013.
  29. Wei Z., Xing-Long G., Jian-Feng L. et al. // Chin. J. Chem. Phys. 2009. V. 22. No. 5. P. 535.
  30. Yanceng F., Xinglong G., Shouhu X. et al. // Ind. Eng. Chem. Res. 2013. V. 52. No. 2. P. 771.
  31. Narayan S., Lunt M., Kubick D.J. et al. Electrically conductive silicones and method of manufacture thereof. US Patent 6902688, cl. H01B1/22, C08K9/02. 2001.
  32. Степанов Г.В., Крамаренко Е.Ю., Перов Н.С. и др. // Вест. ПНИПУ. Механика. 2013. № 4. С. 106.
  33. Li J., Gong X., Xu Z.B., Jiang W. // Int. J. Mat. Res. 2008. V. 99. No. 12. P. 1358.
  34. Günther D., Borin D.Yu., Günther S., Odenbach S. // Smart Mater. Struct. 2012. V. 21. Art. No. 015005.
  35. Opie S., Yim W. // Proc. IMECE2007 (Seattle, 2007) P. 99.
  36. Woods B.K.S., Wereley N., Hoffmaster R., Nersessian N. // Int. J. Mod. Phys. B. 2007. V. 21. No. 28—29. P. 5010.
  37. Филиппова Ю.А., Папугаева А.В., Панов Д.В., и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1813; Filippova Yu.A., Papugaeva A.V., Panov D.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1885.
  38. Wang X., Gordaninejad F., Calgar M. et al. // J. Mech. Des. 2009. V. 131. No. 9. Art. No. 091004.
  39. Bica I. // J. Ind. Eng. Chem. 2009. V. 15. P. 609.
  40. Bica I., Anitas E.M., Averis L.M.E. // J. Ind. Eng. Chem. 2015. V. 27. P. 334.
  41. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V., Storozhenko P.A. // J. Magn. Magn. Mater. 2020. V. 498. Art. No. 166071.
  42. Stepanov G.V., Semerenko D.A., Bakhtiiarov A.V., Storozhenko P.A. // J. Supercond. Nov. Magn. 2013. V. 26. P. 1055.
  43. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V. et al. // Smart Mater. Struct. 2021. V. 30. Art. No. 015023.
  44. Borin D., Stepanov G., Dohmen E. // Arch. Appl. Mech. 2019. V. 89. P. 105.
  45. Stepanov G.V., Bakhtiiarov A.V., Lobanov D.A. et al. // SN Appl. Sci. 2022. V. 4. P. 178.
  46. http://magnetolab.ru/page_nauka_elastomer.html.
  47. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V. et al. // J. Magn. Magn. Mater. 2020. V. 498. Art. No. 166125.
  48. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V. et al. // Phys. Sci. Rev. 2022. V. 7. No. 10. P. 1141.
  49. Вызулин С.А., Бузько В.Ю., Каликинцева Д.А., и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1322; Vyzulin S.A., Buz’ko V.Yu., Kalikintseva D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 1019.
  50. Tong Y., Dong X., Qi M. // Soft Matter. 2018. V. 14. P. 3504.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Field dependence curves of the specific active resistance ρ (a) and magnetocapacitance ε (b) of the isotropic sample MAE No. 1 during magnetization reversal according to the scheme "antiparallel orientation → parallel orientation". In this and the following figures, the orientation of the external field (large arrow) relative to the direction of the initial magnetization of the sample (small arrow) is shown by round symbols when the sample passes through the next cycle.

Baixar (132KB)
3. Fig. 2. Field dependence curves of specific active resistance ρ (a) and magnetocapacitance ε (b) of anisotropic sample MAE No. 2 during magnetization reversal according to the scheme “antiparallel orientation → parallel orientation”.

Baixar (133KB)
4. Fig. 3. Field dependence curves of specific active resistance ρ (a) and magnetocapacitance ε (b) of anisotropic sample MAE No. 3 during magnetization reversal according to the scheme “antiparallel orientation → parallel orientation”.

Baixar (124KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024