Electroconductivity of silicone-based elastomer filled with magnetically hard particles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Silicone-based elastomer containing Nd-Fe-B-alloy particles garnished with a small portion of nickel grains has been studied for the capability to conduct alternating current. The observations suggest that the presence of nickel expands the variation range of the conductivity and magnetocapacitance in external magnetic fields. In addition, the composite demonstrates the memory of primary magnetizing manifesting itself as certain specific features of the hysteresis loops depending on the polarity of the external magnetic field.

Full Text

Restricted Access

About the authors

A. V. Bakhtiiarov

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Author for correspondence.
Email: abakhtia@gmail.com
Russian Federation, Moscow

G. V. Stepanov

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Email: abakhtia@gmail.com
Russian Federation, Moscow

D. A. Lobanov

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Email: abakhtia@gmail.com
Russian Federation, Moscow

D. A. Semerenko

Bauman Moscow State Technical University

Email: abakhtia@gmail.com
Russian Federation, Moscow

P. A. Storozhenko

Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds

Email: abakhtia@gmail.com
Russian Federation, Moscow

References

  1. Raikher Yu.L., Stolbov O.V. // J. Magn. Magn. Mater. 2003. V. 258—259. P. 477.
  2. Crippa F., Moore T.L., Mortato M. et al. // J. Magn. Magn. Mater. 2017. V. 427. P. 212.
  3. Gundermann T., Günther S., Borin D., Odenbach S. // J. Phys. Conf. Ser. 2013. V. 412. Art. No. 012027.
  4. Feng J., Xuan S., Ding L., Gong X. // Composites A. 2017. V. 103. P. 25.
  5. Diermeier A., Sindersberger D., Krenkel L. et al. // Open Mech. Eng. J. 2018. V. 12. P. 192.
  6. Nikitin L.V., Stepanov G.V., Mironova L.S., Gorbunov A.I. // J. Magn. Magn. Mater. 2004. V. 272—276. P. 2072.
  7. Lee D., Lee M., Jung N. et al. // Smart Mater. Struct. 2014. V. 23. Art. No. 055017.
  8. Borin D., Stepanov G., Musikhin A. et al. // Polymers. 2020. V. 12. Art. No. 2371.
  9. Borin D.Yu., Stepanov G.V. // J. Optoelectron. Adv. Mater. 2013. V. 15. No. 3—4. P. 249.
  10. Carlson J.D., Jolly M.R. // Mechatronics. 2000. V. 10. P. 555.
  11. Stepanov G., Borin D., Odenbach S. // J. Phys. Conf. Ser. 2009. V. 149. Art. No. 012098.
  12. Kwon S.H., Lee J.H., Choi H.J. // Materials. 2018. V. 11. No. 6. Art. No. 1040.
  13. Böse H., Röder R. Magnetorheological elastomers and use thereof. US Patent No. 7608197, cl. H01F1/447, F16F1/361. 2005.
  14. Stepanov G.V., Borin D. Yu., Raikher Yu.L. et al. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 204121.
  15. Melenev P., Raikher Yu., Stepanov G. et al. // J. Intell. Mater. Syst. Struct. 2011. V. 22. No. 6. P. 531.
  16. Lovšin M., Brandl D., Glavan G. at al. // Polymers. 2021. V. 13. Art. No. 4422.
  17. Urban M., Strankowski M. // Materials. 2017. V. 10. No. 9. Art. No. 1083.
  18. Shevchenko V.G., Stepanov G.V., Kramarenko E.Y. // Polymers. 2021. V. 13. Art. No. 2002.
  19. Dirisamer F., Cakmak U., Marth E., Major Z. // Acta Polytech. CTU Proc. 2016. V. 3. P. 7.
  20. Yu K., Fang N.X., Huang G., Wang Q. // Adv. Mater. 2018. V. 30. No. 21. Art. No. 1706348.
  21. Li Y., Li J., Li W., Samali B. // Smart Mater. Struct. 2013. V. 22. Art. No. 035005.
  22. Semisalova A.S., Perov N.S., Stepanov G.V. et al. // Soft Matter. 2013. V. 9. P. 11318.
  23. Kchit N., Bossis G. // J. Phys.: Cond. Matter. 2008. V. 20. Art. No. 204136.
  24. Ghafoorianfar N., Gordaninejad F. // Proc. SPIE. 2015. V. 9435. Art. No. 94351E.
  25. Ye W.Q., Deng Y.M., Wang W. // Appl. Mech. Mater. 2010. V. 37—38. P. 444.
  26. Xuli Z., Yonggang M., Yu T. // Smart Mater. Struct. 2010. V. 19. Art. No. 117001.
  27. Yu W., Shouhu X., Bo D. et al. // Smart Mater. Struct. 2016. V. 25. Art. No. 025003.
  28. Gundermann Th., Odenbach S. // Smart Mater. Struct. 2014. V. 23. Art. No. 105013.
  29. Wei Z., Xing-Long G., Jian-Feng L. et al. // Chin. J. Chem. Phys. 2009. V. 22. No. 5. P. 535.
  30. Yanceng F., Xinglong G., Shouhu X. et al. // Ind. Eng. Chem. Res. 2013. V. 52. No. 2. P. 771.
  31. Narayan S., Lunt M., Kubick D.J. et al. Electrically conductive silicones and method of manufacture thereof. US Patent 6902688, cl. H01B1/22, C08K9/02. 2001.
  32. Степанов Г.В., Крамаренко Е.Ю., Перов Н.С. и др. // Вест. ПНИПУ. Механика. 2013. № 4. С. 106.
  33. Li J., Gong X., Xu Z.B., Jiang W. // Int. J. Mat. Res. 2008. V. 99. No. 12. P. 1358.
  34. Günther D., Borin D.Yu., Günther S., Odenbach S. // Smart Mater. Struct. 2012. V. 21. Art. No. 015005.
  35. Opie S., Yim W. // Proc. IMECE2007 (Seattle, 2007) P. 99.
  36. Woods B.K.S., Wereley N., Hoffmaster R., Nersessian N. // Int. J. Mod. Phys. B. 2007. V. 21. No. 28—29. P. 5010.
  37. Филиппова Ю.А., Папугаева А.В., Панов Д.В., и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1813; Filippova Yu.A., Papugaeva A.V., Panov D.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1885.
  38. Wang X., Gordaninejad F., Calgar M. et al. // J. Mech. Des. 2009. V. 131. No. 9. Art. No. 091004.
  39. Bica I. // J. Ind. Eng. Chem. 2009. V. 15. P. 609.
  40. Bica I., Anitas E.M., Averis L.M.E. // J. Ind. Eng. Chem. 2015. V. 27. P. 334.
  41. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V., Storozhenko P.A. // J. Magn. Magn. Mater. 2020. V. 498. Art. No. 166071.
  42. Stepanov G.V., Semerenko D.A., Bakhtiiarov A.V., Storozhenko P.A. // J. Supercond. Nov. Magn. 2013. V. 26. P. 1055.
  43. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V. et al. // Smart Mater. Struct. 2021. V. 30. Art. No. 015023.
  44. Borin D., Stepanov G., Dohmen E. // Arch. Appl. Mech. 2019. V. 89. P. 105.
  45. Stepanov G.V., Bakhtiiarov A.V., Lobanov D.A. et al. // SN Appl. Sci. 2022. V. 4. P. 178.
  46. http://magnetolab.ru/page_nauka_elastomer.html.
  47. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V. et al. // J. Magn. Magn. Mater. 2020. V. 498. Art. No. 166125.
  48. Stepanov G.V., Borin D.Yu., Bakhtiiarov A.V. et al. // Phys. Sci. Rev. 2022. V. 7. No. 10. P. 1141.
  49. Вызулин С.А., Бузько В.Ю., Каликинцева Д.А., и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1322; Vyzulin S.A., Buz’ko V.Yu., Kalikintseva D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 1019.
  50. Tong Y., Dong X., Qi M. // Soft Matter. 2018. V. 14. P. 3504.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Field dependence curves of the specific active resistance ρ (a) and magnetocapacitance ε (b) of the isotropic sample MAE No. 1 during magnetization reversal according to the scheme "antiparallel orientation → parallel orientation". In this and the following figures, the orientation of the external field (large arrow) relative to the direction of the initial magnetization of the sample (small arrow) is shown by round symbols when the sample passes through the next cycle.

Download (132KB)
3. Fig. 2. Field dependence curves of specific active resistance ρ (a) and magnetocapacitance ε (b) of anisotropic sample MAE No. 2 during magnetization reversal according to the scheme “antiparallel orientation → parallel orientation”.

Download (133KB)
4. Fig. 3. Field dependence curves of specific active resistance ρ (a) and magnetocapacitance ε (b) of anisotropic sample MAE No. 3 during magnetization reversal according to the scheme “antiparallel orientation → parallel orientation”.

Download (124KB)

Copyright (c) 2024 Russian Academy of Sciences