Determination of threshold values of parameters of electronic irradiation of glass leading to electrostatic discharges

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Experimental data are presented on the minimum values of energies and flux densities of electrons, the impact of which on the cover glasses of solar batteries and reflecting elements of thermoradiators of artificial Earth satellites leads to electrostatic discharges. It has been established that the addition of protons to the composition of the particle flux acting on the studied samples can suppress the development of discharges. For a qualitative interpretation of the results obtained, a mathematical model is proposed.

Авторлар туралы

R. Khasanshin

JSC “Kompozit”; Bauman Moscow State Technical University

Хат алмасуға жауапты Автор.
Email: rhkhas@mail.ru
Ресей, Korolev, 141070; Moscow, 105005

D. Ouvarov

JSC “Kompozit”

Email: rhkhas@mail.ru
Ресей, Korolev, 141070

Әдебиет тізімі

  1. Ferguson D.C., Wimberly S.C. // Proc. 50th AIAA Aerospace Sci. Mtg. (Nashville, 2013) Art. No. 0810.
  2. Новиков Л.С. Модель космоса. Научно-информационное издание. Т. 2. М.: КДУ, 2007. 1144 с.
  3. Kazuhiro Toyoda, Teppei Okumura, Satoshi Hosoda, Mengu Cho // J. Spacecr. Rockets. 2005. V. 42. No. 5. P. 947.
  4. Хасаншин Р.Х., Применко Д.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 633; Khasanshin R.H., Primenko D.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 526.
  5. Kadono K., Itakura N., Akai T. et al. // J. Phys. Cond. Matter. 2010. V. 22. No. 4. Art. No. 045901.
  6. Бреховских С.М., Викторова Ю.Н., Ланда Л.М. Радиационные эффекты в стеклах. М.: Энергоиздат, 1982. 182 с.
  7. Fu X., Song L., Jiacheng, Li J. // J. Rare Earths. 2014. V. 32. No. 11. P. 1037.
  8. Kreidl N., Hensler J. // J. Amer. Ceram. Soc. 2006. V. 38. P. 423.
  9. Roussel J.-F., Alet I., Faye D., Pereira A. // J. Spacecraft. Rockets. 2004. V. 41. No. 5. P. 812.
  10. Zhao Xiaohu, Shen Zhigang, Xing Yushan, Ma Shulin // J. Acta Aeronaut. Astronaut. Sci. 2009. V. 30. No. 1. P. 159.
  11. Хасаншин Р.Х., Новиков Л.С. // Персп. матер. 2021. № 10. С. 5; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2022. V. 13. No. 2. P. 326.
  12. Fakhfakh S., Jbara O., Belhaj M. et al. // J. Appl. Phys. 2008. V. 104. Art. No. 093704.
  13. Hanna R., Paulmier T., Belhaj M., et al. // J. Physics D. 2011. V. 44. Art. No. 445402.
  14. Guerch K., Paulmier T., Guillemet-Fritsch S., Lenormand P. // Nucl. Instr. Meth. B. 2015. V. 349. P. 147.
  15. Miyake H., Tanaka Y., Takada T., Liu R. // IEEE Trans. Dielec. Elect. Insul. 2007. V. 14. No. 2. P. 520.
  16. Khasanshin R.H., Novikov L.S. // Adv. Space Res. 2016. V. 57. P. 2187.
  17. Koons C., Mazur J.E., Selesnick R.S. et al.// Proc. 6th Spacecraft Charging Technol. Conf. (Hanscom, 1998). P. 7.
  18. Ollier N., Rizza G., Boizot B., Petite G. // J. Appl. Phys. 2006. V. 99. Art. No. 073511.
  19. Ollier N., Boizot B., Reynard B., et al. // J. Nucl. Mater. 2005. V. 340. P. 209.
  20. Хасаншин Р.Х. Новиков Л.С. // Персп. матер. 2020. № 11. С. 5; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2021. V. 12. No. 2. P. 313
  21. Boizot B., Petite G., Ghaleb D. et al. // Nucl. Instr. Meth. B. 2000. V. 166–167. P. 500.
  22. Boizot B., Petite G., Ghaleb D., Calas G. // J. Non-Cryst. Solids. 2001. V. 283. P. 179.
  23. Хасаншин Р.Х., Новиков Л.С., Гаценко Л.С., Волкова Я.Б. // Персп. матер. 2015. № 1. С. 22; Khasanshin R.H., Novikov L.S., Gatsenko L.S., Volkova Ya.B. // Inorg. Mater. Appl. Res. 2015. V. 6. No. 5. P. 438.
  24. Хасаншин Р.Х., Новиков Л.С. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2018. № 11. С. 48; Khasanshin R.H., Novikov L.S. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2018. V. 12. No. 6. P. 1088.
  25. Свечкин В.П., Савельев А.А., Соколова С.П., Бороздина О.В. // Космич. техн. и технологии. 2017. № 2. С. 99; Svechkin V.P., Savelyev A.A., Sokolova S.P., Borozdina O.V. // Space Tech. Technol. 2017. No. 2. P. 99.
  26. Хасаншин Р.Х., Новиков Л.С. // Персп. матер. 2023. № 1. С. 19; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2023, V. 14. No. 5. P. 1207.
  27. Hai-Bo Z., Wei-Qin L., Meng C. // Chin. Phys. Lett. 2012. V. 29. No. 4. Art. No. 047901.
  28. Li W.-Q., Zhang H.-B. // Appl. Surf. Sci. 2010. V. 256. No. 11. P. 3482.
  29. Zhang H.-B., Li W.-Q., Cao M. // J. Electron Microsc. 2012. V. 61. P. 85.
  30. Raftari B., Budko N.V., Vuik C. // J. Appl Phys. 2015. V. 118. P. 204101.
  31. Markowich P.A., Ringhofer C., Schmeiser C. Semiconductor equations. N.Y.: Springer-Verlag Inc., 1990.
  32. Ильин В.П. Численные методы решения задач электрофизики. М.: Наука, 1985. 333 с.
  33. Михеев Н.Н., Степович М.А., Широкова Е.В. // Изв. РАН. Сер. физ. 2010. Т. 74. № 7. С. 1043; Mikheev N.N., Stepovich M.A., Shirokova E.V. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. No. 7. P. 1002.
  34. Михеев Н.Н., Степович М.А., Широкова Е.В. // Изв. РАН. Сер. физ. 2012. Т. 76. № 9. С. 1086; Mikheev N.N., Stepovich M.A., Shirokova E.V. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. No. 9. P. 974.
  35. Желтоножская М.В., Лыкова Е.Н., Черняев А.П., Яценко В.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 1003; Zheltonozhskaya M.V., Lykova E.N., Iatsenko V.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No.7. P. 915.
  36. Валиев Д.Т., Степанов С.А., Yao G., Zhou Y. // ФТТ. 2019. Т. 61. № 10. С. 1879; Valiev D.T., Stepanov S.A., Yao G., Zhou Y. // Phys. Solid State. 2019. V. 61. No. 10. P. 1835.
  37. Nguyen H.-D., Wulfkühler J.-P., Tajmar M. // J. Vac. Sci. Technol. B. 2023. V. 41. No. 3. Art. No. 034203.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024