Determination of threshold values of parameters of electronic irradiation of glass leading to electrostatic discharges

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental data are presented on the minimum values of energies and flux densities of electrons, the impact of which on the cover glasses of solar batteries and reflecting elements of thermoradiators of artificial Earth satellites leads to electrostatic discharges. It has been established that the addition of protons to the composition of the particle flux acting on the studied samples can suppress the development of discharges. For a qualitative interpretation of the results obtained, a mathematical model is proposed.

About the authors

R. H. Khasanshin

JSC “Kompozit”; Bauman Moscow State Technical University

Author for correspondence.
Email: rhkhas@mail.ru
Russian Federation, Korolev, 141070; Moscow, 105005

D. V. Ouvarov

JSC “Kompozit”

Email: rhkhas@mail.ru
Russian Federation, Korolev, 141070

References

  1. Ferguson D.C., Wimberly S.C. // Proc. 50th AIAA Aerospace Sci. Mtg. (Nashville, 2013) Art. No. 0810.
  2. Новиков Л.С. Модель космоса. Научно-информационное издание. Т. 2. М.: КДУ, 2007. 1144 с.
  3. Kazuhiro Toyoda, Teppei Okumura, Satoshi Hosoda, Mengu Cho // J. Spacecr. Rockets. 2005. V. 42. No. 5. P. 947.
  4. Хасаншин Р.Х., Применко Д.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 633; Khasanshin R.H., Primenko D.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 526.
  5. Kadono K., Itakura N., Akai T. et al. // J. Phys. Cond. Matter. 2010. V. 22. No. 4. Art. No. 045901.
  6. Бреховских С.М., Викторова Ю.Н., Ланда Л.М. Радиационные эффекты в стеклах. М.: Энергоиздат, 1982. 182 с.
  7. Fu X., Song L., Jiacheng, Li J. // J. Rare Earths. 2014. V. 32. No. 11. P. 1037.
  8. Kreidl N., Hensler J. // J. Amer. Ceram. Soc. 2006. V. 38. P. 423.
  9. Roussel J.-F., Alet I., Faye D., Pereira A. // J. Spacecraft. Rockets. 2004. V. 41. No. 5. P. 812.
  10. Zhao Xiaohu, Shen Zhigang, Xing Yushan, Ma Shulin // J. Acta Aeronaut. Astronaut. Sci. 2009. V. 30. No. 1. P. 159.
  11. Хасаншин Р.Х., Новиков Л.С. // Персп. матер. 2021. № 10. С. 5; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2022. V. 13. No. 2. P. 326.
  12. Fakhfakh S., Jbara O., Belhaj M. et al. // J. Appl. Phys. 2008. V. 104. Art. No. 093704.
  13. Hanna R., Paulmier T., Belhaj M., et al. // J. Physics D. 2011. V. 44. Art. No. 445402.
  14. Guerch K., Paulmier T., Guillemet-Fritsch S., Lenormand P. // Nucl. Instr. Meth. B. 2015. V. 349. P. 147.
  15. Miyake H., Tanaka Y., Takada T., Liu R. // IEEE Trans. Dielec. Elect. Insul. 2007. V. 14. No. 2. P. 520.
  16. Khasanshin R.H., Novikov L.S. // Adv. Space Res. 2016. V. 57. P. 2187.
  17. Koons C., Mazur J.E., Selesnick R.S. et al.// Proc. 6th Spacecraft Charging Technol. Conf. (Hanscom, 1998). P. 7.
  18. Ollier N., Rizza G., Boizot B., Petite G. // J. Appl. Phys. 2006. V. 99. Art. No. 073511.
  19. Ollier N., Boizot B., Reynard B., et al. // J. Nucl. Mater. 2005. V. 340. P. 209.
  20. Хасаншин Р.Х. Новиков Л.С. // Персп. матер. 2020. № 11. С. 5; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2021. V. 12. No. 2. P. 313
  21. Boizot B., Petite G., Ghaleb D. et al. // Nucl. Instr. Meth. B. 2000. V. 166–167. P. 500.
  22. Boizot B., Petite G., Ghaleb D., Calas G. // J. Non-Cryst. Solids. 2001. V. 283. P. 179.
  23. Хасаншин Р.Х., Новиков Л.С., Гаценко Л.С., Волкова Я.Б. // Персп. матер. 2015. № 1. С. 22; Khasanshin R.H., Novikov L.S., Gatsenko L.S., Volkova Ya.B. // Inorg. Mater. Appl. Res. 2015. V. 6. No. 5. P. 438.
  24. Хасаншин Р.Х., Новиков Л.С. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2018. № 11. С. 48; Khasanshin R.H., Novikov L.S. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2018. V. 12. No. 6. P. 1088.
  25. Свечкин В.П., Савельев А.А., Соколова С.П., Бороздина О.В. // Космич. техн. и технологии. 2017. № 2. С. 99; Svechkin V.P., Savelyev A.A., Sokolova S.P., Borozdina O.V. // Space Tech. Technol. 2017. No. 2. P. 99.
  26. Хасаншин Р.Х., Новиков Л.С. // Персп. матер. 2023. № 1. С. 19; Khasanshin R.H., Novikov L.S. // Inorg. Mater. Appl. Res. 2023, V. 14. No. 5. P. 1207.
  27. Hai-Bo Z., Wei-Qin L., Meng C. // Chin. Phys. Lett. 2012. V. 29. No. 4. Art. No. 047901.
  28. Li W.-Q., Zhang H.-B. // Appl. Surf. Sci. 2010. V. 256. No. 11. P. 3482.
  29. Zhang H.-B., Li W.-Q., Cao M. // J. Electron Microsc. 2012. V. 61. P. 85.
  30. Raftari B., Budko N.V., Vuik C. // J. Appl Phys. 2015. V. 118. P. 204101.
  31. Markowich P.A., Ringhofer C., Schmeiser C. Semiconductor equations. N.Y.: Springer-Verlag Inc., 1990.
  32. Ильин В.П. Численные методы решения задач электрофизики. М.: Наука, 1985. 333 с.
  33. Михеев Н.Н., Степович М.А., Широкова Е.В. // Изв. РАН. Сер. физ. 2010. Т. 74. № 7. С. 1043; Mikheev N.N., Stepovich M.A., Shirokova E.V. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. No. 7. P. 1002.
  34. Михеев Н.Н., Степович М.А., Широкова Е.В. // Изв. РАН. Сер. физ. 2012. Т. 76. № 9. С. 1086; Mikheev N.N., Stepovich M.A., Shirokova E.V. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. No. 9. P. 974.
  35. Желтоножская М.В., Лыкова Е.Н., Черняев А.П., Яценко В.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 1003; Zheltonozhskaya M.V., Lykova E.N., Iatsenko V.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No.7. P. 915.
  36. Валиев Д.Т., Степанов С.А., Yao G., Zhou Y. // ФТТ. 2019. Т. 61. № 10. С. 1879; Valiev D.T., Stepanov S.A., Yao G., Zhou Y. // Phys. Solid State. 2019. V. 61. No. 10. P. 1835.
  37. Nguyen H.-D., Wulfkühler J.-P., Tajmar M. // J. Vac. Sci. Technol. B. 2023. V. 41. No. 3. Art. No. 034203.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences