New 2D coordination polymer of cobalt(II) pivalate with 1,4-diaminobutane: synthesis and thermal properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of cobalt(II) trimethyl acetate (pivalate) [Co(Рiv)2]n (HРiv = HO2CCMe3) with 1,4-diaminobutane (Dab) in absolute acetonitrile gave a 2D-coordination polymer [Co(Piv)2(Dab)2]n (I) with an admixture of the co-product, but the addition of one equivalent of 2,2´-bipyridine to the reaction mixture made it possible to isolate a single-phase sample of I (according to X-ray diffraction data) with a yield of 78%. The crystal structure of I was determined by X-ray diffraction (CCDC No. 2404406): cobalt(II) atoms in a distorted octahedral environment (CoN4O2) of two monodentate carboxylate groups and four bridging Dab molecules form a layered coordination polymer with a honeycomb-like hcb topology. The thermal behavior of I was studied by synchronous thermal analysis: thermal decomposition leads to the formation of the organic salt (H2Dab)(Piv)2, cobalt(II) pivalate, and the octanuclear complex [Co8O2(Piv)12] — the products were identified by XRD and NMR spectroscopy.

Full Text

Restricted Access

About the authors

V. A. Bushuev

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Higher School of Economics, National Research University

Email: yambulatov@yandex.ru
Russian Federation, Moscow; Moscow

D. S. Yambulatov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

N. V. Gogoleva

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

F. M. Dolgushin

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: yambulatov@yandex.ru
Russian Federation, Moscow

I. V. Skabitsky

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

S. S. Shapovalov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

S. A. Nikolaevskii

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

M. A. Kiskin

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

I. L. Eremenko

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

References

  1. Morritt G.H., Michaels H., Freitag M. // Chem. Phys. Rev. 2022. V. 3. Р. 011306.
  2. Xiao X., Chen Z., Varley R.J., Li C. // Smart Molecules. 2024. V. 2. Р. E20230028.
  3. Yin X., Chen X., Sun W. et al. // Energy Storage Mater. 2020.V. 25. P.846.
  4. Maiti A., Maity D.K., Halder A., Ghoshal D. // Inorg Chem. 2023. V. 62. P. 12403.
  5. Dybtsev D.N., Sapianik A.A., Fedin V.P. // Mendeleev Commun. 2017. V. 27. P. 321.
  6. Aromí G., Batsanov A.S., Christian P. et al. // Chem. Eur. J. 2003. V. 9. P.5142.
  7. Fursova E., Kuznetsova O., Ovcharenko V. et al. // Polyhedron 2007. V. 26. P.2079.
  8. Golubnichaya M.A., Sidorov A.A., Fomina I.G. et al. // Russ. Chem. Bull. 1999. V. 48. P. 1751.
  9. Bykov M., Emelina A., Kiskin M. et al. // Polyhedron. 2009. V. 28. P. 3628.
  10. Zorina‐Tikhonova E.N., Gogoleva N.V., Sidorov A.A. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. P.1396.
  11. Fomina I.G., Aleksandrov G.G., Dobrokhotova Zh.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1909.
  12. Shao D., Moorthy S., Yang X. et al. // Dalton Trans. 2022. V. 51. P. 695.
  13. Wang J., Chen N.-N., Zhang C. et al. // CrystEngComm. 2020. V. 22. P. 811.
  14. Sen A., Sato T., Ohno A. // JACS Au. 2021. V. 1. P. 2080.
  15. Zhang H., Liu G., Shi L. et al. // Nano Energy. 2016. V. 22. P. 149.
  16. Sanchis-Gual R., Coronado-Puchau M., Mallah T., Coronado E. // Coord. Chem. Rev. 2023. V. 480. P. 215025.
  17. Peng Y., Liu X.-L., Xu Z. et al. // Sep. Purif. Technol. 2025. V. 353. P. 128360.
  18. Yao W., Yang R., Xu B. et al. // Transition Met. Chem. 2024. V. 49. P. 331.
  19. Bikash Baruah J. // Coord. Chem. Rev. 2022. V. 470. P. 214694.
  20. Lian Y., Yang W., Zhang C. et al. // Ang. Chem. Intern. Ed. 2020. V. 59. P. 286.
  21. Zorina-Tikhonova E.N., Matyukhina A.K., Chistyakov A.S. // New J. Chem. 2022. V. 46. P. 21245.
  22. Chernomorova M.A., Myakinina M.S., Zhinzhilo V.A., Uflyand I.E. // Polymers (Basel). 2023. V. 15. P. 548.
  23. Roose P., Eller K., Henkes E. et al. // Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, 2015. p. 1
  24. Koning C., Teuwen L., Lacave-Goffin B., Mercier J.P. // Polymer. 2001. V. 42. P. 7247.
  25. Jasinska L., Villani M., Wu J. et al. // Macromolecules. 2011. V. 44. P. 3458.
  26. Gaymans R.J., Van Utteren T.E.C., Van Den Berg J.W.A., Schuyer J. // J. Polym. Sci., Polym. Chem. Ed. 1977. V. 15. P. 537.
  27. Elsaidi S.K., Mohamed M.H., Banerjee D., Thallapally P.K. // Coord. Chem. Rev. 2018. V. 358. P. 125.
  28. Sato O. // Nature. 2016. V. 8. P. 644.
  29. Sato O., Tao J., Zhang Y.Z. // Ang. Chem. Intern. Ed. 2007. V. 46. P. 2152.
  30. Pinkowicz D., Podgajny R., Sieklucka B. // Molecular Magnetic Materials: Concepts and Applications. Wiley, 2016. P. 279.
  31. Polunin R.A., Kolotilov S. V, Kiskin M.A. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 4985.
  32. Minkin V.I. // Russ. Chem. Bull. 2008. V. 57. P. 687.
  33. Yambulatov D.S., Voronina J.K., Goloveshkin A.S. et al. // Int. J. Mol. Sci. 2022. V. 24. P. 215.
  34. Yeşilel O.Z., Karamahmut B., Semerci F. et al. // J. Solid. State. Chem. 2017. V. 249. P. 174.
  35. Li Y., Jiang Q., Cheng K. et al. // Z. Anorg. Allg. Chem. 2009. V.635. P. 2572.
  36. You Z.-L., Zhu H.-L., Liu W.-S. // Acta Crystallogr. C. 2004.V. 60. P. m231.
  37. Bushuev V.A., Gogoleva N.V., Nikolaevskii S.A. et al. // Molecules. 2024. V. 29. P. 2125.
  38. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3.
  39. Sheldrick G.M. // Acta Crystallogr. C. 2015, V. 71. P. 3.
  40. Scarlett N.V.Y., Madsen I.C. // Powder Diffr. 2006. V. 21. P. 278.
  41. Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643.
  42. Hayashi Y., Santoro S., Azuma Y. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 6192.
  43. Colthup N.B., Daly L.H., Widerley S.E. Introduction to Infrared and Raman Spectroscopy, Elsevier, 1975.
  44. Stewart J.E. // J. Chem. Phys. 1959.V. 30. P. 1259.
  45. Zeleňák V., Vargová Z., Györyová K. // Spectrochim, Acta. A. 2007. V. 66. P. 262.
  46. Max J.J., Chapados C. // J. Phys. Chem. A. 2004. V. 108. P. 3324.
  47. Strukl J.S., Walter J.L. // Spectrochim Acta. A. 1971. V. 27. P. 209.
  48. Castellucci E., Angeloni L., Neto N., Sbrana G. // Chem. Phys. 1979. V. 43. P. 365.
  49. Lutsenko I.A., Kiskin M.A., Nelyubina Y. V. // Polyhedron. 2020. V. 190. P. 114764.
  50. Singh G., Singh C.P., Mannan S.M. // J. Hazard. Mater. 2005. V. 122. P. 111.
  51. Sidorov A.A., Fomina I.G., Ponina M.O. // Russ. Chem. Bull. 2000. V. 49. P. 958.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of the layer packing (methyl groups are not shown, the dotted lines indicate H-bonds) (a) and visualization of the topological structure of hcb in the layer (carboxylate groups and hydrogen atoms are not shown) (b) of coordination polymer I.

Download (717KB)
3. Fig. 2. TGA (a) and DTA (b) curves for I.

Download (154KB)
4. Scheme 1. Synthesis of compound I.

Download (149KB)
5. Application
Download (757KB)

Copyright (c) 2025 Российская академия наук