Углекислотная конверсия метана: основы низкоуглеродной стратегии получения синтез-газа и водорода (обзор)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Процесс сухого риформинга метана, или углекислотной конверсии метана, — один из способов утилизации углекислого газа и получения синтез-газа. Это относительно новый процесс, представляющий интерес не только с экологической, но и с экономической точки зрения. На его основе возможно создание низкоуглеродных технологий производства как синтез-газа, так и чистого водорода, что соответствует принятой стратегии по уменьшению эмиссии парниковых газов в атмосферу. Однако его реализации в промышленности препятствует ряд трудностей, основная из которых — быстрая дезактивация катализаторов. В данном обзоре проводится сравнительный анализ сухого риформинга метана и паровой конверсии метана как способов получения водорода, обсуждаются причины потери катализатором активности, роли активной фазы и носителя в стабильности катализаторов. Также описываются методы, позволяющие влиять на характеристики катализаторов, и формулируются требования для разрабатываемых современных катализаторов углекислотной конверсии метана.

Full Text

Restricted Access

About the authors

M. Д. Крючков

Московский государственный университет им. М. В. Ломоносова

Author for correspondence.
Email: mixail.kryuchkov.97@mail.ru
ORCID iD: 0009-0009-9931-2867

химический факультет

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Л. A. Куликов

Московский государственный университет им. М. В. Ломоносова

Email: mixail.kryuchkov.97@mail.ru
ORCID iD: 0000-0002-7665-5404

химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

A. Л. Максимов

Московский государственный университет им. М. В. Ломоносова; Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: mixail.kryuchkov.97@mail.ru
ORCID iD: 0000-0001-9297-4950

химический факультет, чл.-корр., д.х.н., проф.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3; 119991, ГСП-1, г. Москва, Ленинский пр., д. 29, стр. 2

References

  1. Новицкий Э. Г., Баженов С. Д., Волков А. В. Оптимизация методов очистки газовых смесей от диоксида углерода (обзор) // Нефтехимия. 2021. V. 61. № 3. P. 291–310. https://doi.org/10.31857/S0028242121030011 [Novitskii E. G., Bazhenov S. D., Volkov A. V. Optimization of methods for purification of gas mixtures to remove carbon dioxide (a review) // Petrol. Chem. 2021. V. 61. N 4. P. 407–423. https://doi.org/10.1134/S096554412105011X].
  2. Горбунов Д. Н., Ненашева М. В., Теренина М. В., Кардашева Ю. С., Кардашев С. В., Наранов Е. Р., Бугаев А. Л., Солдатов А. В., Максимов А. Л., Караханов Э. А. Превращения диоксида углерода в условиях гомогенного катализа (обзор) // Нефтехимия. 2022. Т. 62. № 1. С. 3–48. https://doi.org/10.31857/S0028242122010014 [Gorbunov D. N., Nenasheva M. V., Terenina M. V., Kardasheva Y. S., Kardashev S. V., Karakhanov E. A., Naranov E. R., Maximov A. L., Bugaev A. L., Soldatov A. V. Transformations of carbon dioxide under homogeneous catalysis conditions (a review) // Petrol. Chem. 2022 . V. 62. N 1. P. 1–39. https://doi.org/10.1134/S0965544122010054].
  3. Кузнецов Н. Ю., Максимов А. Л., Белецкая И. П. Новая технологическая парадигма применения CO2 как С1-синтона в органической химии: I. Cинтез гидроксибензойных кислот, метанола и муравьиной кислоты // Журн. орг. химии. 2022. Т. 58. № 12. С. 1267–1301. https://doi.org/10.31857/S0514749222120011
  4. Дементьев К. И., Дементьева О. С., Иванцов М. И., Куликова М. В., Магомедова М. В., Максимов А. Л., Лядов А. С., Старожицкая А. В., Чудакова М. В. Перспективные направления переработки диоксида углерода с использованием гетерогенных катализаторов (обзор) // Нефтехимия. 2022. Т. 62. № 3. С. 289–327. https://doi.org/10.31857/S0028242122030017 [Dementʹev K. I., Dementeva O. S., Ivantsov M. I., Kulikova M. V., Magomedova M. V., Maximov A. L., Lyadov A. S., Starozhitskaya A. V., Chudakova M. V. Promising approaches to carbon dioxide processing using heterogeneous catalysts (a review) // Petrol. Chem. 2022. V. 62. N 3. P. 445–474. https://doi.org/10.1134/S0965544122050012].
  5. Xin Q., Maximov A. L., Liu B. Y., Wang W., Guo H. Y., Xiao L. F., Wu W. A Highly selective Cr2O3/nano-ZSM-5 bifunctional catalysts for CO2 hydrogenation to aromatics // Russ. J. Appl. Chem. 2022. V. 95. N 2. P. 296–307. https://doi.org/10.1134/S1070427222020100/FIGURES/6
  6. Локтев А. С., Мухин И. Е., Быков М. А., Садовников А. А., Осипов А. К., Дедов А. Г. Новые эффективные катализаторы кислородной и углекислотной конверсии метана в синтез-газ // Нефтехимия. 2022. Т. 62. № 3. С. 387–407. https://doi.org/10.31857/S0028242122030078 [Loktev A. S., Sadovnikov A. A., Osipov A. K., Dedov A. G., Mukhin I. E., Bykov M. A. Novel high-performance catalysts for partial oxidation and dry reforming of methane to synthesis gas // Petrol. Chem. 2022. V. 62. N 5. P. 526–543. https://doi.org/10.1134/S0965544122020207].
  7. Недоливко В. В., Засыпалов Г. О., Вутолкина А. В., Гущин П. А., Винокуров В. А., Куликов Л. А., Егазарьянц С. В., Караханов Э. А., Максимов А. Л., Глотов А. П. Углекислотная конверсия метана (обзор) // ЖПХ. 2020. Т. 93. № 6. С. 763–787. https://doi.org/10.31857/S0044461820060018 [Nedolivko V. V., Zasypalov G. O., Vutolkina A. V., Gushchin P. A., Vinokurov V. A., Egazarʹyants S. V., Glotov A. P., Kulikov L. A., Karakhanov E. A., Maksimov A. L. Carbon dioxide reforming of methane // Russ. J. Appl. Chem. 2020. V. 93. N 6. P. 765–787. https://doi.org/10.1134/S1070427220060014].
  8. Локтев А. С., Архипова В. А., Быков М. А., Садовников А. А., Дедов А. Г. Кобальт-самариевый оксидный композит — новый эффективный катализатор кислородной и углекислотной конверсии метана в синтез-газ // Нефтехимия. 2023. Т. 63. № 1. С. 88–99. https://doi.org/10.31857/S0028242123010082 [Loktev A. S., Arkhipova V. A., Bykov M. A., Sadovnikov A. A., Dedov A. G. Cobalt-samarium oxide composite as a novel high-performance catalyst for partial oxidation and dry reforming of methane into synthesis gas // Petrol. Chem. 2023. V. 63. P. 317–326. https://doi.org/10.1134/S0965544123010048].
  9. Aramouni N. A. K., Touma J. G., Tarboush B. A., Zeaiter J., Ahmad M. N. Catalyst design for dry reforming of methane: Analysis review // Renew. Sustain. Energy Rev. 2018. V. 82. N 3. P. 2570–2585. https://doi.org/10.1016/j.rser.2017.09.076
  10. Rostrup-Nielsen J. R. New aspects of syngas production and use // Catal. Today. 2000. V. 63. N 2–4. P. 159–164. https://doi.org/10.1016/S0920-5861(00)00455-7
  11. Lunsford J. H. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century // Catal. Today. 2000. V. 63. N 2–4. P. 165–174. https://doi.org/10.1016/S0920-5861(00)00456-9
  12. Nikoo M. K., Amin N. A. S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation // Fuel Processing Technol. 2011. V. 92. N 3. P. 678–691. https://doi.org/10.1016/j.fuproc.2010.11.027
  13. Wang S., Lu G. Q., Millar G. J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art // Energy and Fuels. 1996. V. 10. N 4. P. 896–904. https://doi.org/10.1021/ef950227t
  14. Geerlings J. J. C., Zonnevylle M. C., de Groot C. P. M. Studies of the Fischer-Tropsch reaction on Co(0001) // Surf. Sci. 1991. V. 241. N 3. P. 302–314. https://doi.org/10.1016/0039-6028(91)90090-F
  15. Zhang J., Wang H., Dalai A. K. Kinetic studies of carbon dioxide reforming of methane over Ni–Co/Al–Mg–O bimetallic catalyst // Ind. Eng. Chem. Res. 2009. V. 48. N 2. P. 677–684. https://doi.org/10.1021/ie801078p
  16. Liu K., Song C., Subramani V. Hydrogen and syngas production and purification technologies. Hoboken, NJ, USA: John Wiley and Sons, 2009. P. 1–533.
  17. Olsbye U., Wurzel T., Mleczko L. Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2<.sub>O3<.sub> catalyst // Ind. Eng. Chem. Res. 1997. V. 36. N 12. P. 5180–5188. https://doi.org/10.1021/ie970246l
  18. Bradford M. C. J., Vannice M. A. CO2 reforming of CH4 // Catal. Rev. Sci. Eng. 1999. V. 41. N 1. P. 1–42. https://doi.org/10.1081/CR-100101948
  19. Wittich K., Krämer M., Bottke N., Schunk S. A. Catalytic dry reforming of methane: Insights from model systems // ChemCatChem. 2020. V. 12. N 8. P. 2130–2147. https://doi.org/10.1002/cctc.201902142
  20. Крылов О. В. Углекислотная конверсия метана в синтез-газ // Рос. хим. журн. 2000. T. 46. № 1. C. 19–33.
  21. Merkouri L.-P., le Saché E., Pastor-Pérez L., Duyar M. S., Ramirez Reina T. Versatile Ni–Ru catalysts for gas phase CO2<.sub> conversion: Bringing closer dry reforming, reverse water gas shift and methanation to enable end-products flexibility // Fuel. 2022. V. 315. P. 123097. https://doi.org/10.1016/j.fuel.2021.123097
  22. Seo H. Recent scientific progress on developing supported Ni catalysts for dry (CO2<.sub>) reforming of methane // Catalysts. 2018. V. 8. N 3. P. 110. https://doi.org/10.3390/catal8030110
  23. Wang Z., Cao X. M., Zhu J., Hu P. Activity and coke formation of nickel and nickel carbide in dry reforming: A deactivation scheme from density functional theory // J. Catal. 2014. V. 311. P. 469–480. https://doi.org/10.1016/j.jcat.2013.12.015
  24. Bartholomew C. H. Carbon deposition in steam reforming and methanation // Catal. Rev. 1982. V. 24. N 1. P. 67–112. https://doi.org/10.1080/03602458208079650
  25. Zhang Z. L., Verykios X. E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts // Catal. Today. 1994. V. 21. N 2–3. P. 589–595. https://doi.org/10.1016/0920-5861(94)80183-5
  26. Wei J., Iglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts // J. Catal. 2004. V. 224. N 2. P. 370–383. https://doi.org/10.1016/j.jcat.2004.02.032
  27. Wang H. Y., Au C. T. CH4<.sub>/CD4<.sub> isotope effects in the carbon dioxide reforming of methane to syngas over SiO2<.sub>-supported nickel catalysts // Catal. Lett. 1996. V. 38. N 1–2. P. 77–79. https://doi.org/10.1007/BF00806903
  28. Kathiraser Y., Oemar U., Saw E. T., Li Z., Kawi S. Kinetic and mechanistic aspects for CO2<.sub> reforming of methane over Ni based catalysts // Chem. Eng. J. 2015. V. 278. P. 62–78. https://doi.org/10.1016/j.cej.2014.11.143
  29. Solymosi F. The bonding, structure and reactions of CO2<.sub> adsorbed on clean and promoted metal surfaces // J. Mol. Catal. 1991. V. 65. N 3. P. 337–358. https://doi.org/10.1016/0304-5102(91)85070-I
  30. Freund H. J., Messmer R. P. On the bonding and reactivity of CO2 on metal surfaces // Surf. Sci. 1986. V. 172. N 1. P. 1–30. https://doi.org/10.1016/0039-6028(86)90580-7
  31. Ferreira-Aparicio P., Rodríguez-Ramos I., Anderson J. A., Guerrero-Ruiz A. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts // Appl. Catal. A: General. 2000. V. 202. N 2. P. 183–196. https://doi.org/10.1016/S0926-860X(00)00525-1
  32. Pan Y. Xiang, Liu C. Jun, Wiltowski T. S., Ge Q. CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study // Catal. Today. 2009. V. 147. N 2. P. 68–76. https://doi.org/10.1016/j.cattod.2009.05.005
  33. Bian Z., Das S., Wai M. H., Hongmanorom P., Kawi S. A review on bimetallic nickel-based catalysts for CO2 reforming of methane // ChemPhysChem. 2017. V. 18. N 22. P. 3117–3134. https://doi.org/10.1002/cphc.201700529
  34. Abild-Pedersen F., Nørskov J. K., Rostrup-Nielsen J. R., Sehested J., Helveg S. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations // Phys. Rev. B: Condens. Matter. Mater. Phys. 2006. V. 73. N 11. P. 115419. https://doi.org/10.1103/PhysRevB.73.115419
  35. Xu J., Saeys M. Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron // J. Catal. 2006. V. 242. N 1. P. 217–226. https://doi.org/10.1016/j.jcat.2006.05.029
  36. Wolf E. E., Alfani F. Catalysts deactivation by coking // Catal. Rev. 1982. V. 24. N 3. P. 329–371. https://doi.org/10.1080/03602458208079657
  37. Trimm D. L. The formation and removal of coke from nickel catalyst // Catal. Rev. 1977. V. 16. N 1. P. 155–189. https://doi.org/10.1080/03602457708079636
  38. Armor J. N., Martenak D. J. Studying carbon formation at elevated pressure // Appl. Catal. A: General. 2001. V. 206. N 2. P. 231–236. https://doi.org/10.1016/S0926-860X(00)00608-6
  39. Argyle M., Bartholomew C. Heterogeneous catalyst deactivation and regeneration: A review // Catalysts. 2015. V. 5. N 1. P. 145–269. https://doi.org/10.3390/catal5010145
  40. Guczi L., Stefler G., Geszti O., Sajó I., Pászti Z., Tompos A., Schay Z. Methane dry reforming with CO2: A study on surface carbon species // Appl. Catal. A: General. 2010. V. 375. N 2. P. 236–246. https://doi.org/10.1016/j.apcata.2009.12.040
  41. Bartholomew C. H. Mechanisms of catalyst deactivation // Appl. Catal. A: General. 2001. V. 212. N 1–2. P. 17–60. https://doi.org/10.1016/S0926-860X(00)00843-7
  42. Rostrup-Nielsen J. R. Production of synthesis gas // Catal. Today. 1993. V. 18. N 4. P. 305–324. https://doi.org/10.1016/0920-5861(93)80059-A
  43. Rostrup-Nielsen J. R., Sehested J., Nørskov J. K. Hydrogen and synthesis gas by steam- and CO2 reforming // Advances in Catalysis. 2002. V. 47. P. 65–139. https://doi.org/10.1016/s0360-0564(02)47006-x
  44. Helveg S., López-Cartes C., Sehested J., Hansen P. L., Clausen B. S., Rostrup-Nielsen J. R., Abild-Pedersen F., Nørskov J. K. Atomic-scale imaging of carbon nanofibre growth // Nature. 2004. V. 427. N 6973. P. 426–429. https://doi.org/10.1038/nature02278
  45. Rostrup-Nielsen J., Trimm D. L. Mechanisms of carbon formation on nickel-containing catalysts // J. Catal. 1977. V. 48. N 1–3. P. 155–165. https://doi.org/10.1016/0021-9517(77)90087-2
  46. Tang S., Ji L., Lin J., Zeng H. C., Tan K. L., Li K. CO2 reforming of methane to synthesis gas over sol-gel-made Ni/γ-Al2O3 catalysts from organometallic precursors // J. Catal. 2000. V. 194. N 2. P. 424–430. https://doi.org/10.1006/jcat.2000.2957
  47. Kim J. H., Suh D. J., Park T. J., Kim K. L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts // Appl. Catal. A: General. 2000. V. 197. N 2. P. 191–200. https://doi.org/10.1016/S0926-860X(99)00487-1
  48. Frusteri F., Spadaro L., Arena F., Chuvilin A. TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane // Carbon N Y. 2002. V. 40. N 7. P. 1063–1070. https://doi.org/10.1016/S0008-6223(01)00243-3
  49. Zhang J., Wang H., Dalai A. K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 // Appl. Catal. A: General. 2008. V. 339. N 2. P. 121–129. https://doi.org/10.1016/j.apcata.2008.01.027
  50. Gili A., Schlicker L., Bekheet M. F., Görke O., Penner S., Grünbacher M., Götsch T., Littlewood P., Marks T. J., Stair P. C., Schomäcker R., Doran A., Selve S., Simon U., Gurlo A. Surface carbon as a reactive intermediate in dry reforming of methane to syngas on a 5% Ni/MnO catalyst // ACS Catal. 2018. V. 8. N 9. P. 8739–8750. https://doi.org/10.1021/acscatal.8b01820
  51. Schulz L. A., Kahle L. C. S., Delgado K. H., Schunk S. A., Jentys A., Deutschmann O., Lercher J. A. On the coke deposition in dry reforming of methane at elevated pressures // Appl. Catal. A: General. 2015. V. 504. P. 599–607. https://doi.org/10.1016/j.apcata.2015.03.002
  52. Pakhare D., Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts // Chem. Soc. Rev. 2014. V. 43. N 22. P. 7813–7837. https://doi.org/10.1039/c3cs60395d
  53. Ashcroft A. T., Cheetham A. K., Green M. L. H., Vernon P. D. F. Partial oxidation of methane to synthesis gas using carbon dioxide // Nature. 1991. V. 352. N 6332. P. 225–226. https://doi.org/10.1038/352225a0
  54. Djinović P., Batista J., Pintar A. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst // Int. J. Hydrogen Energy. 2012. V. 37. N 3. P. 2699–2707. https://doi.org/10.1016/j.ijhydene.2011.10.107
  55. Fidalgo B., Arenillas A., Menéndez J. A. Mixtures of carbon and Ni/Al2O3 as catalysts for the microwave-assisted CO2 reforming of CH4 // Fuel Processing Technol. 2011. V. 92. N 8. P. 1531–1536. https://doi.org/10.1016/j.fuproc.2011.03.015
  56. Quincoces C. E., De Vargas S. P., Grange P., González M. G. Role of Mo in CO2 reforming of CH4 over Mo promoted Ni/Al2O3 catalysts // Mater. Lett. 2002. V. 56. N 5. P. 698–704. https://doi.org/10.1016/S0167-577X(02)00598-0
  57. Castro Luna A. E., Iriarte M. E. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst // Appl. Catal. A: General. 2008. V. 343. N 1–2. P. 10–15. https://doi.org/10.1016/j.apcata.2007.11.041
  58. Effendi A., Hellgardt K., Zhang Z. G., Yoshida T. Characterisation of carbon deposits on Ni/SiO2 in the reforming of CH4-CO2 using fixed- and fluidised-bed reactors // Catal. Commun. 2003. V. 4. N 4. P. 203–207. https://doi.org/10.1016/S1566-7367(03)00034-7
  59. Jeong H., Kim K. I., Kim D., Song I. K. Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts // J. Mol. Catal. A: Chemical. 2006. V. 246. N 1–2. P. 43–48. https://doi.org/10.1016/j.molcata.2005.10.013
  60. Ruckenstein E., Hu Y. H. Role of support in CO2 reforming of CH4 to syngas over Ni catalysts // J. Catal. 1996. V. 162. N 2. P. 230–238. https://doi.org/10.1006/jcat.1996.0280
  61. Bradford M. C. J., Vannice M. A. The role of metal-support interactions in CO2 reforming of CH4 // Catal. Today. 1999. V. 50. N 1. P. 87–96. https://doi.org/10.1016/S0920-5861(98)00465-9
  62. Cheng Z. X., Zhao X. G., Li J. L., Zhu Q. M. Role of support in CO2 reforming of CH4 over a Ni/γ-Al2O3 catalyst // Appl. Catal. A: General. 2001. V. 205. N 1–2. P. 31–36. https://doi.org/10.1016/S0926-860X(00)00560-3
  63. Al-Fatesh A. S. A., Fakeeha A. H., Abasaeed A. E. Effects of promoters on methane dry reforming over Ni catalyst on a mixed (α-Al2O3 + TiO2-P25) support // Int. J. Phys. Sci. 2011. V. 6. N 36. P. 8083–8092. https://doi.org/10.5897/IJPS11.1572
  64. Amin M. H., Putla S., Hamid S. B. A., Bhargava S. K. Understanding the role of lanthanide promoters on the structure-activity of nanosized Ni/γ-Al2O3 catalysts in carbon dioxide reforming of methane // Appl. Catal. A: General. 2015. V. 492. P. 160–168. https://doi.org/10.1016/j.apcata.2014.12.038
  65. Qiu Y., Chen J., Zhang J. Effect of CeO2 and CaO promoters on ignition performance for partial oxidation of methane over Ni/MgO–Al2O3 catalyst // J. Natural Gas Chem. 2007. V. 16. N 2. P. 148–154. https://doi.org/10.1016/S1003-9953(07)60040-1
  66. Liu D., Quek X. Y., Cheo W. N. E., Lau R., Borgna A., Yang Y. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal-support interaction // J. Catal. 2009. V. 266. N 2. P. 380–390. https://doi.org/10.1016/j.jcat.2009.07.004
  67. Takanabe K., Nagaoka K., Nariai K., Aika K. I. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane // J. Catal. 2005. V. 232. N 2. P. 268–275. https://doi.org/10.1016/j.jcat.2005.03.011
  68. Abdulrasheed A., Jalil A. A., Gambo Y., Ibrahim M., Hambali H. U., Shahul Hamid M. Y. A review on catalyst development for dry reforming of methane to syngas: Recent advances // Renew. Sustain. Energy Rev. 2019. V. 108. P. 175–193. https://doi.org/10.1016/j.rser.2019.03.054
  69. Rostrup-Nielsen J. R., Bak Hansen J. H. CO2-reforming of methane over transition metals // J. Catal. 1993. V. 144. N 1. P. 38–49. https://doi.org/10.1006/jcat.1993.1312
  70. Hou Z., Chen P., Fang H., Zheng X., Yashima T. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts // Int. J. Hydrogen Energy. 2006. V. 31. N 5. P. 555–561. https://doi.org/10.1016/j.ijhydene.2005.06.010
  71. Erdöhelyi A., Cserényi J., Solymosi F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts // J. Catal. 1993. V. 141. N 1. P. 287–299. https://doi.org/10.1006/jcat.1993.1136
  72. De Souza G., Marcilio N. R., Perez-Lopez O. W. Dry reforming of methane at moderate temperatures over modified Co-Al Co-precipitated catalysts // Mater. Res. 2014. V. 17. N 4. P. 1047–1055. https://doi.org/10.1590/1516-1439.269614
  73. Ferreira-Aparicio P., Guerrero-Ruiz A., Rodríguez-Ramos I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts // Appl. Catal. A: General. 1998. V. 170. N 1. P. 177–187. https://doi.org/10.1016/S0926-860X(98)00048-9
  74. Solymosi F., Kutsán G., Erdöhelyi A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals // Catal. Lett. 1991. V. 11. N 2. P. 149–156. https://doi.org/10.1007/BF00764080
  75. Ghelamallah M., Granger P. Supported-induced effect on the catalytic properties of Rh and Pt–Rh particles deposited on La2O3 and mixed α-Al2O3–La2O3 in the dry reforming of methane // Appl. Catal. A: General. 2014. V. 485. P. 172–180. https://doi.org/10.1016/j.apcata.2014.07.021
  76. Rostrup-Nielsen J. R. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane // J. Catal. 1984. V. 85. N 1. P. 31–43. https://doi.org/10.1016/0021-9517(84)90107-6
  77. Molenbroek A. M., Nørskov J. K., Clausen B. S. Structure and reactivity of Ni–Au nanoparticle catalysts // J. Phys. Chem. B. 2001. V. 105. N 23. P. 5450–5458. https://doi.org/10.1021/jp0043975
  78. Jiang Z., Liao X., Zhao Y. Comparative study of the dry reforming of methane on fluidised aerogel and xerogel Ni/Al2O3 catalysts // Appl. Petrochem. Res. 2013. V. 3. N 3–4. P. 91–99. https://doi.org/10.1007/s13203-013-0035-9
  79. Tsyganok A. I., Inaba M., Tsunoda T., Hamakawa S., Suzuki K., Hayakawa T. Dry reforming of methane over supported noble metals: A novel approach to preparing catalysts // Catal. Commun. 2003. V. 4. N 9. P. 493–498. https://doi.org/10.1016/S1566-7367(03)00130-4
  80. Cai W., Ye L., Zhang L., Ren Y., Yue B., Chen X., He H. Highly dispersed nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: The effect of anchoring // Materials. 2014. V. 7. N 3. P. 2340–2355. https://doi.org/10.3390/ma7032340
  81. Papadopoulou C., Matralis H., Verykios X. Utilization of biogas as a renewable carbon source: Dry reforming of methane. Springer, New York, 2012. P. 57–127.
  82. Benrabaa R., Barama A., Boukhlouf H., Guerrero-Caballero J., Rubbens A., Bordes-Richard E., Löfberg A., Vannier R. N. Physico-chemical properties and syngas production via dry reforming of methane over NiAl2O4 catalyst // Int. J. Hydrogen Energy. 2017. V. 42. N 18. P. 12989–12996. https://doi.org/10.1016/j.ijhydene.2017.04.030
  83. Tomishige K., Chen Y. G., Fujimoto K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts // J. Catal. 1999. V. 181. N 1. P. 91–103. https://doi.org/10.1006/jcat.1998.2286
  84. Tomishige K., Chen Y., Li X., Yokoyama K., Sone Y., Yamazaki O., Fujimoto K. Development of active and stable nickel-magnesia solid solution catalysts for CO2 reforming of methane // Stud. Surf. Sci. Catal. 1998. V. 114. P. 375–378. https://doi.org/10.1016/s0167-2991(98)80774-x
  85. Chen Y. G., Tomishige K., Fujimoto K. Promotion in activity and stability of nickel-magnesia solid solution catalyst by structural rearrangement via hydration for reforming of CH4 with CO2 // Chem. Lett. 1997. N 10. P. 999–1000. https://doi.org/10.1246/cl.1997.999
  86. Hayakawa T., Suzuki S., Nakamura J., Uchijima T., Hamakawa S., Suzuki K., Shishido T., Takehira K. CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method // Appl. Catal. A: General. 1999. V. 183. N 2. P. 273–285. https://doi.org/10.1016/S0926-860X(99)00071-X
  87. Hayakawa T., Harihara H., Andersen A. G., Suzuki K., Yasuda H., Tsunoda T., Hamakawa S., York A. P. E., Yoon Y. S., Shimizu M., Takehira K. Sustainable Ni/Ca1–xSrxTiO3 catalyst prepared in situ for the partial oxidation of methane to synthesis gas // Appl. Catal. A: General. 1997. V. 149. N 2. P. 391–410. https://doi.org/10.1016/S0926-860X(96)00274-8
  88. Provendier H., Petit C., Estournès C., Libs S., Kiennemann A. Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition // Appl. Catal. A: General. 1999. V. 180. N 1–2. P. 163–173. https://doi.org/10.1016/S0926-860X(98)00343-3
  89. Мазо Г. Н., Шляхтин О. А., Локтев А. С., Дедов А. Г. Катализаторы окисления метана на основе перовскитоподобных сложных оксидов кобальта и никеля // Изв. АН. Сер. хим. 2019. № 11. C. 1949–1953.
  90. Дедов А. Г., Шляхтин О. А., Локтев А. С., Мазо Г. Н., Малышев С. А., Тюменова С. И., Баранчиков А. Е., Моисеев И. И. Новые катализаторы углекислотной конверсии метана в синтез-газ // ДАН. 2017. Т. 477. № 4. С. 425–428. https://doi.org/10.7868/S0869565217340084
  91. Bradford M. C. J., Vannice M. A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity // Appl. Catal. A: General. 1996. V. 142. N 1. P. 73–96. https://doi.org/10.1016/0926-860X(96)00065-8
  92. Mette K., Kühl S., Tarasov A., Willinger M. G., Kröhnert J., Wrabetz S., Trunschke A., Scherzer M., Girgsdies F., Düdder H., Kähler K., Ortega K. F., Muhler M., Schlögl R., Behrens M., Lunkenbein T. High-temperature stable Ni nanoparticles for the dry reforming of methane // ACS Catal. 2016. V. 6. N 10. P. 7238–7248. https://doi.org/10.1021/acscatal.6b01683
  93. Li X., Li D., Tian H., Zeng L., Zhao Z. J., Gong J. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles // Appl. Catal. B. 2017. V. 202. P. 683–694. https://doi.org/10.1016/j.apcatb.2016.09.071
  94. Bian Z., Suryawinata I. Y., Kawi S. Highly carbon resistant multicore-shell catalyst derived from Ni–Mg phyllosilicate nanotubes@silica for dry reforming of methane // Appl. Catal. B. 2016. V. 195. P. 1–8. https://doi.org/10.1016/j.apcatb.2016.05.001
  95. San-José-Alonso D., Juan-Juan J., Illán-Gómez M. J., Román-Martínez M. C. Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane // Appl. Catal. A: General. 2009. V. 371. N 1–2. P. 54–59. https://doi.org/10.1016/j.apcata.2009.09.026
  96. Budiman A. W., Song S. H., Chang T. S., Shin C. H., Choi M. J. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development // Catal. Surveys Asia. 2012. V. 16. N 4. P. 183–197. https://doi.org/10.1007/s10563-012-9143-2
  97. Ruckenstein E., Wang H. Y. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ -Al2O3 catalysts // J. Catal. 2002. V. 205. N 2. P. 289–293. https://doi.org/10.1006/jcat.2001.3458
  98. Дедов А. Г., Локтев А. С., Мухин И. Е., Караваев А. А., Тюменова С. И., Баранчиков А. Е., Иванов В. К., Маслаков К. И., Быков М. А., Моисеев И. И. Кислородная и углекислотная конверсия метана в синтез-газ на новых катализаторах Ni–Co/MFI // Нефтехимия. 2018. Т. 58. № 2. С. 156–166. https://doi.org/10.7868/S0028242118020077 [Dedov A. G., Loktev A. S., Mukhin I. E., Karavaev A. A., Tyumenova S. I., Moiseev I. I., Baranchikov A. E., Ivanov V. K., Maslakov K. I., Bykov M. A. Synthesis gas production by partial oxidation of methane and dry reforming of methane in the presence of novel Ni–Co/MFI catalysts // Petrol. Chem. 2018. V. 58. N 3. P. 203–213. https://doi.org/10.1134/S0965544118030052].
  99. Theofanidis S. A., Galvita V. V., Poelman H., Marin G. B. Enhanced carbon-resistant dry reforming Fe–Ni catalyst: Role of Fe // ACS Catal. 2015. V. 5. N 5. P. 3028–3039. https://doi.org/10.1021/acscatal.5b00357
  100. Kim S. M., Abdala P. M., Margossian T., Hosseini D., Foppa L., Armutlulu A., van Beek W., Comas-Vives A., Copéret C., Müller C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts // J. Am. Chem. Soc. 2017. V. 139. N 5. P. 1937–1949. https://doi.org/10.1021/jacs.6b11487
  101. Rahemi N., Haghighi M., Babaluo A. A., Allahyari S., Jafari M. F. Syngas production from reforming of greenhouse gases CH4/CO2 over Ni-Cu/Al2O3 nanocatalyst: Impregnated vs. plasma-treated catalyst // Energy Convers Manag. 2014. V. 84. P. 50–59. https://doi.org/10.1016/j.enconman.2014.04.016
  102. Wu T., Zhang Q., Cai W., Zhang P., Song X., Sun Z., Gao L. Phyllosilicate evolved hierarchical Ni- and Cu–Ni/SiO2 nanocomposites for methane dry reforming catalysis // Appl. Catal. A: General. 2015. V. 503. P. 94–102. https://doi.org/10.1016/j.apcata.2015.07.012
  103. Bonura G., Cannilla C., Frusteri F. Ceria-gadolinia supported NiCu catalyst: A suitable system for dry reforming of biogas to feed a solid oxide fuel cell (SOFC) // Appl. Catal. B. 2012. V. 121–122. P. 135–147. https://doi.org/10.1016/j.apcatb.2012.03.028
  104. Misture S. T., McDevitt K. M., Glass K. C., Edwards D. D., Howe J. Y., Rector K. D., He H., Vogel S. C. Sulfur-resistant and regenerable Ni/Co spinel-based catalysts for methane dry reforming // Catal. Sci. Technol. 2015. V. 5. N 9. P. 4565–4574. https://doi.org/10.1039/c5cy00800j
  105. Chen H. W., Wang C. Y., Yu C. H., Tseng L. T., Liao P. H. Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts // Catal. Today. 2004. V. 97. N 2–3. SPEC. ISS. P. 173–180. https://doi.org/10.1016/j.cattod.2004.03.067
  106. Guczi L., Erdöhelyi A. Catalysis for alternative energy generation. Springer, New York, 2011. P. 1–536. https://doi.org/10.1016/j.cej.2016.04.108
  107. Khani Y., Shariatinia Z., Bahadoran F. High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane // Chem. Eng. J. 2016. V. 299. P. 353–366. https://doi.org/10.1016/j.cej.2016.04.108
  108. Arbag H., Yasyerli S., Yasyerli N., Dogu G. Activity and stability enhancement of Ni–MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane // Int. J. Hydrogen Energy. 2010. V. 35. N 6. P. 2296–2304. https://doi.org/10.1016/j.ijhydene.2009.12.109
  109. Jóźwiak W. K., Nowosielska M., Rynkowski J. Reforming of methane with carbon dioxide over supported bimetallic catalysts containing Ni and noble metal I. Characterization and activity of SiO2 supported Ni–Rh catalysts // Appl. Catal. A: General. 2005. V. 280. N 2. P. 233–244. https://doi.org/10.1016/j.apcata.2004.11.003
  110. Chen Y. G., Tomishige K., Yokoyama K., Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2 // Appl. Catal. A: General. 1997. V. 165. N 1–2. P. 335–347. https://doi.org/10.1016/S0926-860X(97)00216-0
  111. Nagaoka K., Jentys A., Lercher J. A. Methane autothermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydrotalcite precursors // J. Catal. 2005. V. 229. N 1. P. 185–196. https://doi.org/10.1016/j.jcat.2004.10.006
  112. Inui T., Saigo K., Fujii Y., Fujioka K. Catalytic combustion of natural gas as the role of on-site heat supply in rapid catalytic CO2–H2O reforming of methane // Catal. Today. 1995. V. 26. N 3–4. P. 295–302. https://doi.org/10.1016/0920-5861(95)00151-9
  113. García-Diéguez M., Pieta I. S., Herrera M. C., Larrubia M. A., Alemany L. J. Improved Pt–Ni nanocatalysts for dry reforming of methane // Appl. Catal. A: General. 2010. V. 377. N 1–2. P. 191–199. https://doi.org/10.1016/j.apcata.2010.01.038
  114. Mu R., Fu Q., Liu H., Tan D., Zhai R., Bao X. Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles // Appl. Surf. Sci. 2009. V. 255. N 16. P. 7296–7301. https://doi.org/10.1016/j.apsusc.2009.03.086
  115. Menning C. A., Chen J. G. Regenerating Pt-3d-Pt model electrocatalysts through oxidation-reduction cycles monitored at atmospheric pressure // J. Power. Sources. 2010. V. 195. N 10. P. 3140–3144. https://doi.org/10.1016/j.jpowsour.2009.11.109
  116. Li L., Zhou L., Ould-Chikh S., Anjum D. H., Kanoun M. B., Scaranto J., Hedhili M. N., Khalid S., Laveille P. V., DʹSouza L., Clo A., Basset J.-M. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane // ChemCatChem. 2015. V. 7. N 5. P. 819–829. https://doi.org/10.1002/cctc.201402965
  117. Wu H., Pantaleo G., La Parola V., Venezia A. M., Collard X., Aprile C., Liotta L. F. Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3–MOx (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects // Appl. Catal. B. 2014. V. 156–157. P. 350–361. https://doi.org/10.1016/j.apcatb.2014.03.018
  118. Liu W., Li L., Lin S., Luo Y., Bao Z., Mao Y., Li K., Wu D., Peng H. Confined Ni–In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming // J. Energy Chem. 2021. V. 65. P. 34–47. https://doi.org/10.1016/j.jechem.2021.05.017
  119. Horváth A., Beck A., Németh M., Sáfrán G., Roškarič M., Žerjav G., Pintar A. Influence of 0.25% indium addition to Ni/CeO2 catalysts for dry reforming of methane // Catalysts. 2024. V. 14. N 6. P. 383. https://doi.org/10.3390/catal14060383
  120. Horváth A., Németh M., Beck A., Sáfrán G., La Parola V., Liotta L. F., Žerjav G., Roškarič M., Pintar A. Longevity increase of an impregnated Ni/CeO2–Al2O3 dry reforming catalyst by indium // Appl. Catal. A: General. 2024. V. 669. P. 119495. https://doi.org/10.1016/j.apcata.2023.119495
  121. Yu Y.-X., Wang G., Zhu Y.-A., Zhou X.-G. Mechanistic and microkinetic insights into the stability and activity of Ni3In catalyst for dry methane reforming // Chem. Eng. J. 2024. V. 479. P. 146959. https://doi.org/10.1016/j.cej.2023.146959
  122. Liu X., Jiang F., Liu K., Zhao G., Liu J., Xu H. NiGa nano-alloy for the dry reforming of methane: Influences of Ga alloying with Ni on the catalytic activity and stability // Chem. Eng. J. 2024. V. 487. P. 150351. https://doi.org/10.1016/j.cej.2024.150351
  123. Al-Fatesh A. S., Rajput Y. B., Bayazed M. O., Alrashed M. M., Abu-Dahrieh J. K., Elnour A. Y., Ibrahim A. A., Fakeeha A. H., Abasaeed A. E., Kumar R. Impact of gallium loading and process conditions on H2 production from dry reforming of methane over Ni/ZrO2–Al2O3 catalysts // Appl. Catal. A: General. 2024. V. 681. P. 119794. https://doi.org/10.1016/j.apcata.2024.119794
  124. Elnour A. Y., Abasaeed A. E., Fakeeha A. H., Ibrahim A. A., Alreshaidan S. B., Al-Fatesh A. S. Dry reforming of methane (DRM) over hydrotalcite-based Ni–Ga/(Mg, Al)Ox catalysts: Tailoring Ga content for improved stability // Catalysts. 2024. V. 14. N 10. P. 721. https://doi.org/10.3390/catal14100721
  125. Дедов А. Г., Локтев А. С., Мухин И. Е., Баранчиков А. Е., Иванов В. К., Быков М. А., Солодова Е. В., Моисеев И. И. Влияние природы носителя на стабильность никелевых и никель-кобальтовых катализаторов кислородной и углекислотной конверсии метана в синтез-газ // Нефтехимия. 2019. Т. 59. № 3. С. 261–270. https://doi.org/10.1134/S0028242119030043 [Dedov A. G., Loktev A. S., Mukhin I. E., Solodova E. V., Moiseev I. I., Baranchikov A. E., Ivanov V. K., Bykov M. A. Effect of the support nature on stability of nickel and nickel-cobalt catalysts for partial oxidation and dry reforming of methane to synthesis gas // Petrol. Chem. 2019. V. 59. N 4. P. 385–393. https://doi.org/10.1134/S0965544119040042].
  126. El Hassan N., Kaydouh M. N., Geagea H., El Zein H., Jabbour K., Casale S., El Zakhem H., Massiani P. Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15 // Appl. Catal. A: General. 2016. V. 520. P. 114–121. https://doi.org/10.1016/j.apcata.2016.04.014
  127. Zhang M., Ji S., Hu L., Yin F., Li C., Liu H. Structural characterization of highly stable Ni/SBA-15 catalyst and its catalytic performance for methane reforming with CO2 // Chin. J. Catal. 2006. V. 27. N 9. P. 777–781. https://doi.org/10.1016/S1872-2067(06)60043-0
  128. Liu D., Quek X. Y., Wah H. H. A., Zeng G., Li Y., Yang Y. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts // Catal. Today. 2009. V. 148. N 3–4. P. 243–250. https://doi.org/10.1016/j.cattod.2009.08.014
  129. Amin M. H., Tardio J., Bhargava S. K. A comparison study on methane dry reforming with carbon dioxide over Ni catalysts supported on mesoporous SBA-15, MCM-41, KIT-6 and Al2O3 // Chemeca. 2013. P. 1–6.
  130. Imelik B., Vedrine J. C. Catalyst characterization: Physical techniques for solid materials. New York: Springer, 1994. P. 694.
  131. Hu Y. H., Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming // Advances in Catalysis. 2004. V. 48. P. 297–345. https://doi.org/10.1016/S0360-0564(04)48004-3
  132. Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion to syngas // Catal. Rev. Sci. Eng. 2002. V. 44. N 3. P. 423–453. https://doi.org/10.1081/CR-120005742
  133. Hu Y. H., Ruckenstein E. An optimum NiO content in the CO2 reforming of CH4 with NiO/MgO solid solution catalysts // Catal. Lett. 1996. V. 36. N 3–4. P. 145–149. https://doi.org/10.1007/BF00807611
  134. Guo J., Lou H., Zhao H., Chai D., Zheng X. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels // Appl. Catal. A: General. 2004. V. 273. N 1–2. P. 75–82. https://doi.org/10.1016/j.apcata.2004.06.014
  135. Wang H. Y., Ruckenstein E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support // Appl. Catal. A: General. 2000. V. 204. N 1. P. 143–152. https://doi.org/10.1016/S0926-860X(00)00547-0
  136. Bernal S., Calvino J. J., Cauqui M. A., Gatica J. M., López Cartes C., Pérez Omil J. A., Pintado J. M. Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect // Catal. Today. 2003. V. 77. N 4. P. 385–406. https://doi.org/10.1016/S0920-5861(02)00382-6
  137. Heo I., Yoon D. Y., Cho B. K., Nam I. S., Choung J. W., Yoo S. Activity and thermal stability of Rh-based catalytic system for an advanced modern TWC // Appl. Catal. B. 2012. V. 121–122. P. 75–87. https://doi.org/10.1016/j.apcatb.2012.03.032
  138. Rafieenezhad R., Izadbakhsh A., Sanati A. M. Effects of Ti and Al incorporation on the performance of FSM-16 supported nickel catalyst in dry reforming of methane // J. Porous Mater. 2021. V. 28. N 6. P. 1749–1763. https://doi.org/10.1007/s10934-021-01111-2
  139. Osaki T., Horiuchi T., Suzuki K., Mori T. Suppression of carbon deposition in CO2-reforming of methane on metal sulfide catalysts // Catal. Lett. 1995. V. 35. N 1–2. P. 39–43. https://doi.org/10.1007/BF00807002
  140. Zhang Z., Verykios X. E. A stable and active nickel-based catalyst for carbon dioxide reforming of methane to synthesis gas // J. Chem. Soc. Chem. Commun. 1995. N 1. P. 71–72. https://doi.org/10.1039/C39950000071
  141. Nagaoka K., Okamura M., Aika K. I. Titania supported ruthenium as a coking-resistant catalyst for high pressure dry reforming of methane // Catal. Commun. 2001. V. 2. N 8. P. 255–260. https://doi.org/10.1016/S1566-7367(01)00043-7
  142. Gadalla A. M., Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2 // Chem. Eng. Sci. 1988. V. 43. N 11. P. 3049–3062. https://doi.org/10.1016/0009-2509(88)80058-7
  143. Horiuchi T., Sakuma K., Fukui T., Kubo Y., Osaki T., Mori T. Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst // Appl. Catal. A: General. 1996. V. 144. N 1–2. P. 111–120. https://doi.org/10.1016/0926-860X(96)00100-7
  144. Lanre M. S., Abasaeed A. E., Fakeeha A. H., Ibrahim A. A., Alquraini A. A., AlReshaidan S. B., Al-Fatesh A. S. Modification of CeNi0.9Zr0.1O3 perovskite catalyst by partially substituting yttrium with zirconia in dry reforming of methane // Materials. 2022. V. 15. N 10. P. 3564. https://doi.org/10.3390/ma15103564
  145. T. Cao A. N., Nguyen H. H., T. Pham T.-P., Pham L. K. H., Ha Le Phuong D., Nguyen N. A., N. Vo D.-V., Pham P. T. H. Insight into the role of material basicity in the coke formation and performance of Ni/Al2O3 catalyst for the simulated- biogas dry reforming // J. Energy Institute. 2023. V. 108. P. 101252. https://doi.org/10.1016/j.joei.2023.101252
  146. Kambolis A., Matralis H., Trovarelli A., Papadopoulou C. Ni/CeO2–ZrO2 catalysts for the dry reforming of methane // Appl. Catal. A: General. 2010. V. 377. N 1–2. P. 16–26. https://doi.org/10.1016/j.apcata.2010.01.013
  147. Aneggi E., de Leitenburg C., Dolcetti G., Trovarelli A. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2–ZrO2 // Catal. Today. 2006. V. 114. N 1. P. 40–47. https://doi.org/10.1016/j.cattod.2006.02.008
  148. Liu Z., Grinter D. C., Lustemberg P. G., Nguyen-Phan T.-D., Zhou Y., Luo S., Waluyo I., Crumlin E. J., Stacchiola D. J., Zhou J., Carrasco J., Busnengo H. F., Ganduglia-Pirovano M. V., Senanayake S. D., Rodriguez J. A. Dry reforming of methane on a highly-active Ni–CeO2 catalyst: Effects of metal-support interactions on C–H bond breaking // Angew. Chemie Int. Ed. 2016. V. 55. N 26. P. 7455–7459. https://doi.org/10.1002/anie.201602489
  149. Rashid M. U., Wan Daud W. M. A., Mohidem N. A., Mohamad M. B., Akhtar J., Azam M., Miran W. Methane dry reforming with CO2 over ceria supported Ni catalyst prepared by reverse microemulsion synthesis // Fuel. 2022. V. 317. P. 123433. https://doi.org/10.1016/j.fuel.2022.123433
  150. Kim C., Hong E., Shin C.-H. Improvement of methane combustion activity for Pd/ZrO2 catalyst by simple reduction/reoxidation treatment // Catalysts. 2019. V. 9. N 10. P. 838. https://doi.org/10.3390/catal9100838
  151. Luisetto I., Tuti S., Romano C., Boaro M., Di Bartolomeo E. Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation // J. CO2 Utilization. 2019. V. 30. P. 63–78. https://doi.org/10.1016/j.jcou.2019.01.006
  152. Kuznetsova T. G., Sadykov V. A. Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials // Kinet. Catal. 2008. V. 49. N 6. P. 840–858. https://doi.org/10.1134/S0023158408060098
  153. Montoya J. A., Romero-Pascual E., Gimon C., Del Angel P., Monzón A. Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol-gel // Catal. Today. 2000. V. 63. N 1. P. 71–85. https://doi.org/10.1016/S0920-5861(00)00447-8
  154. Terribile D., Trovarelli A., De Leitenburg C., Primavera A., Dolcetti G. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions // Catal. Today. 1999. V. 47. N 1–4. P. 133–140. https://doi.org/10.1016/S0920-5861(98)00292-2
  155. Damyanova S., Pawelec B., Arishtirova K., Huerta M. V. M., Fierro J. L. G. The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming // Appl. Catal. B. 2009. V. 89. N 1–2. P. 149–159. https://doi.org/10.1016/j.apcatb.2008.11.035
  156. Chen J., Wu Q., Zhang J., Zhang J. Effect of preparation methods on structure and performance of Ni/Ce0.75Zr0.25O2 catalysts for CH4–CO2 reforming // Fuel. 2008. V. 87. N 13–14. P. 2901–2907. https://doi.org/10.1016/j.fuel.2008.04.015
  157. Kumar P., Sun Y., Idem R. O. Nickel-based ceria, zirconia, and ceria-zirconia catalytic systems for low-temperature carbon dioxide reforming of methane // Energy Fuels. 2007. V. 21. N 6. P. 3113–3123. https://doi.org/10.1021/ef7002409
  158. Roh H. S., Potdar H. S., Jun K. W., Kim J. W., Oh Y. S. Carbon dioxide reforming of methane over Ni incorporated into Ce–ZrO2 catalysts // Appl. Catal. A: General. 2004. V. 276. N 1–2. P. 231–239. https://doi.org/10.1016/j.apcata.2004.08.009
  159. Wolf E. E., Alfani F. Catalysts deactivation by coking // Catal. Rev. 1982. V. 24. N 3. P. 329–371. https://doi.org/10.1080/03602458208079657
  160. Ay H., Üner D. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts // Appl. Catal. B. 2015. V. 179. P. 128–138. https://doi.org/10.1016/j.apcatb.2015.05.013
  161. Verykios X. E. Catalytic dry reforming of natural gas for the production of chemicals and hydrogen // Int. J. Hydrogen Energy. 2003. V. 28. N 10. P. 1045–1063. https://doi.org/10.1016/S0360-3199(02)00215-X
  162. Tsipouriari V. A., Verykios X. E. Carbon and oxygen reaction pathways of CO2 reforming of methane over Ni/La2O3 and Ni/Al2O3 catalysts studied by isotopic tracing techniques // J. Catal. 1999. V. 187. N 1. P. 85–94. https://doi.org/10.1006/jcat.1999.2565
  163. Zhang Z., Verykios X. E. Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts // Appl. Catal. A: General. 1996. V. 138. N 1. P. 109–133. https://doi.org/10.1016/0926-860X(95)00238-3
  164. Gronchi P., Centola P., Del Rosso R. Dry reforming of CH4 with Ni and Rh metal catalysts supported on SiO2 and La2O3 // Appl. Catal. A: General. 1997. V. 152. N 1. P. 83–92. https://doi.org/10.1016/S0926-860X(96)00358-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Composition of synthesis gas obtained using various methane processing technologies. Shaded with diagonal stripes - with CO2 recycling.

Download (313KB)
3. Fig. 2. Simplified diagram of hydrogen production from methane using steam and carbon dioxide conversion of methane.

Download (230KB)
4. Fig. 3. Equilibrium content of methane depending on temperature at a pressure of 1 atm and n(CH4 + CO2) = 2 mol [22].

Download (97KB)
5. Fig. 4. Simplified mechanism of the process of carbon dioxide conversion of methane.

Download (152KB)
6. Fig. 5. Schematic representation of different methods of CO2 adsorption on the nickel surface. a — adsorption only by the Ni—C bond, b — adsorption only by the Ni—O bond, c — mixed adsorption by the Ni—C and Ni—O bonds (adapted from [29]).

Download (83KB)
7. Fig. 6. Types of carbon and temperatures of their formation and reduction (from data [23]).

Download (201KB)
8. Fig. 7. Scheme of formation of different types of carbon [39].

Download (150KB)
9. Fig. 8. Scheme of the origin and growth of filamentary carbon on Ni particles (from data [34]).

Download (69KB)
10. Fig. 9. TEM micrograph of filamentary carbon [50].

Download (127KB)
11. Fig. 10. Various methods for improving the stability of catalysts. 1 — no filamentary carbon is formed on smaller particles; 2 — use of Lewis-basic supports; 3 — use of oxygen-donor supports; 4 — use of additives that block carbon growth centers and its incorporation into Ni (adapted from [81]).

Download (159KB)
12. Fig. 11. Schematic mechanism of the reaction of carbon dioxide conversion of methane on a Ni–Fe catalyst and the results of energy dispersive analysis of the catalyst before and after the reaction. Red atoms are Fe, green ones are Ni [100].

Download (252KB)
13. Fig. 12. The amount of carbon formed in 5 hours of reaction at 800°C (a) and the dependence of the reaction rate on temperature (b) for the Ni–γ-Al2O3 catalyst modified with the basic oxides Na2O, K2O, CaO and MgO (from data [134]).

Download (134KB)

Copyright (c) 2024 Russian Academy of Sciences