ЛАЗЕРНОЕ ОХЛАЖДЕНИЕ ИОНА ИТТЕРБИЯ-171 БЕЗ ИСПОЛЬЗОВАНИЯ МАГНИТНОГО ПОЛЯ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Экспериментально реализована схема лазерного охлаждения иона 171Yb+ в радиочастотной ловушке с использованием трехчастотного лазерного поля, компоненты которого резонансны оптическим переходам линии 2S1/2 → 2P1/2, не требующего наличия магнитного поля. Исключение магнитного поля в цикле лазерного охлаждения позволяет осуществлять прецизионный контроль слабого магнитного поля (∼ 10−2Гс), используемого для спектроскопии часовых переходов в оптическом стандарте частоты на одиночном ионе иттербия, что важно для подавления сдвигов частоты, связанных с квадратичным эффектом Зеемана.

Об авторах

О. Н Прудников

Институт лазерной физики Сибирского отделения Российской академии наук

Email: oleg.nsu@gmail.com
Новосибирск, Россия

Д. С Крысенко

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный технический университет

Новосибирск, Россия; Новосибирск, Россия

А. В Тайченачев

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный университет

Новосибирск, Россия; Новосибирск, Россия

В. И Юдин

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный технический университет; Новосибирский государственный университет

Новосибирск, Россия; Новосибирск, Россия; Новосибирск, Россия

С. В Чепуров

Институт лазерной физики Сибирского отделения Российской академии наук

Новосибирск, Россия

Н. С Лапин

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный технический университет

Новосибирск, Россия; Новосибирск, Россия

С. Н Багаев

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный университет

Новосибирск, Россия; Новосибирск, Россия

Список литературы

  1. M. A. Nielsen, and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
  2. S. Falke, N. Lemke, Ch. Grebing et al., New J. Phys. 16, 073023 (2014).
  3. M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, Nat. Photonics 14, 411 (2020).
  4. W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schaffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A.D. Ludlow, Nature 564, 87 (2018).
  5. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
  6. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).
  7. Y. Huang, H. Guan, P. Liu, W. Bian, L. Ma, K. Liang, T. Li, and K. Gao, Phys. Rev. Lett. 116, 01300 (2016).
  8. G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, and P. Delva, J. Geodes. 91, 597 (2017).
  9. W. F. McGrew, X. Zhang X, R. J. Fasano, S. A. Schaffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T.H. Yoon, and A.D. Ludlow, Nature 564, 87 (2018) .
  10. R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, Phys. Rev. Lett. 113, 210801 (2014).
  11. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, Phys. Rev. Lett. 113, 210802 (2014).
  12. V. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T. Pruttivarasin, M. A. Hohensee, and H. Haffner, Nature Physics 12, 465 (2016).
  13. C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova and S. G. Porsev, Nature 567, 2048 (2019).
  14. L. S. Dreissen, C.-H. Yeh, H. A. F¨urst, K. C. Grensemann, and T. E. Mehlst¨aubler, Nature Commun. 13, 7314 (2022).
  15. A. Arvanitaki, J. Huang, and K.V. Tilburg, Phys. Rev. D 91, 015015 (2015).
  16. Y.V. Stadnik, and V.V. Flambaum, Phys. Rev. Lett. 115, 201301 (2015).
  17. Chr. Tamm, S. Weyers, B. Lipphardt, and E. Peik, Phys. Rev. A 80, 043403 (2009).
  18. O. N. Prudnikov, S. V. Chepurov, A. A. Lugovoy, K. M. Rumynin, S. N. Kuznetsov, A. V. Taichenachev, V. I. Yudin, and S. N. Bagayev, Quant. Electron. 47, 806 (2017).
  19. S. V. Chepurov, A. A. Lugovoy, O. N. Prudnikov, A. V. Taichenachev, and S. N. Bagayev, Quant. Electron. 49, 412 (2019).
  20. N. Huntemann, M. Okhapkin, B. Lipphardt, S.Weyers, Chr. Tamm, and E. Peik, Phys. Rev. Lett. 108, 090801 (2012).
  21. N. Huntemann, B. Lipphardt, M. Okhapkin, Chr. Tamm, E. Peik, A. V. Taichenachev and V. I. Yudin, Phys. Rev. Lett. 109, 213002 (2012).
  22. M. A. Aksenov, I. V. Zalivako, I. A. Semerikov, A. S. Borisenko, N. V. Semenin, P. L. Sidorov, A. K. Fedorov, K. Yu. Khabarova, and N. N. Kolachevsky, Phys. Rev. A 107, 052612 (2023).
  23. D. S. Krysenko and O. N. Prudnikov, JETP 137, 239 (2023).
  24. O. N. Prudnikov, A. V. Taichenachev, A.M. Tumaikin and V. I. Yudin, JETP 88, 433 (1999).
  25. E. Biemontyz, J-F Dutrieuxz, I. Martinx, and P. Quinetz, J. Phys. B: At. Mol. Opt. Phys. 31, 3321 (1998.)
  26. A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and L. Hollberg, Phys. Rev. A 63, 033402 (2001).
  27. A. P. Kulosa, O. N. Prudnikov, D. Vadlejch, H. A. Furst, A. A. Kirpichnikova, A. V. Taichenachev, V. I. Yudin, and T. E. Mehlstaubler, New J. Phys. 25 053008 (2023).
  28. S. V. Chepurov, N. A. Pavlov, A. A. Lugovoy, S. N. Bagayev, and A. V. Taichenachev, Quantum Electronics 51, 473 (2021).
  29. C. A. Schrama, E. Peik, W. W. Smith, and H. Walther, Opt. Comm. 101, 32 (1993).
  30. A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, Phys. Rev. A 67, 033810 (2003).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024