LAZERNOE OKhLAZhDENIE IONA ITTERBIYa-171 BEZ ISPOL'ZOVANIYa MAGNITNOGO POLYa

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Экспериментально реализована схема лазерного охлаждения иона 171Yb+ в радиочастотной ловушке с использованием трехчастотного лазерного поля, компоненты которого резонансны оптическим переходам линии 2S1/2 → 2P1/2, не требующего наличия магнитного поля. Исключение магнитного поля в цикле лазерного охлаждения позволяет осуществлять прецизионный контроль слабого магнитного поля (∼ 10−2Гс), используемого для спектроскопии часовых переходов в оптическом стандарте частоты на одиночном ионе иттербия, что важно для подавления сдвигов частоты, связанных с квадратичным эффектом Зеемана.

作者简介

O. Prudnikov

Институт лазерной физики Сибирского отделения Российской академии наук

Email: oleg.nsu@gmail.com
Новосибирск, Россия

D. Krysenko

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный технический университет

Новосибирск, Россия; Новосибирск, Россия

A. Taychenachev

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный университет

Новосибирск, Россия; Новосибирск, Россия

V. Yudin

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный технический университет; Новосибирский государственный университет

Новосибирск, Россия; Новосибирск, Россия; Новосибирск, Россия

S. Chepurov

Институт лазерной физики Сибирского отделения Российской академии наук

Новосибирск, Россия

N. Lapin

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный технический университет

Новосибирск, Россия; Новосибирск, Россия

S. Bagaev

Институт лазерной физики Сибирского отделения Российской академии наук; Новосибирский государственный университет

Новосибирск, Россия; Новосибирск, Россия

参考

  1. M. A. Nielsen, and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010).
  2. S. Falke, N. Lemke, Ch. Grebing et al., New J. Phys. 16, 073023 (2014).
  3. M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, Nat. Photonics 14, 411 (2020).
  4. W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schaffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A.D. Ludlow, Nature 564, 87 (2018).
  5. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
  6. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).
  7. Y. Huang, H. Guan, P. Liu, W. Bian, L. Ma, K. Liang, T. Li, and K. Gao, Phys. Rev. Lett. 116, 01300 (2016).
  8. G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, and P. Delva, J. Geodes. 91, 597 (2017).
  9. W. F. McGrew, X. Zhang X, R. J. Fasano, S. A. Schaffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T.H. Yoon, and A.D. Ludlow, Nature 564, 87 (2018) .
  10. R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, Phys. Rev. Lett. 113, 210801 (2014).
  11. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, Phys. Rev. Lett. 113, 210802 (2014).
  12. V. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T. Pruttivarasin, M. A. Hohensee, and H. Haffner, Nature Physics 12, 465 (2016).
  13. C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova and S. G. Porsev, Nature 567, 2048 (2019).
  14. L. S. Dreissen, C.-H. Yeh, H. A. F¨urst, K. C. Grensemann, and T. E. Mehlst¨aubler, Nature Commun. 13, 7314 (2022).
  15. A. Arvanitaki, J. Huang, and K.V. Tilburg, Phys. Rev. D 91, 015015 (2015).
  16. Y.V. Stadnik, and V.V. Flambaum, Phys. Rev. Lett. 115, 201301 (2015).
  17. Chr. Tamm, S. Weyers, B. Lipphardt, and E. Peik, Phys. Rev. A 80, 043403 (2009).
  18. O. N. Prudnikov, S. V. Chepurov, A. A. Lugovoy, K. M. Rumynin, S. N. Kuznetsov, A. V. Taichenachev, V. I. Yudin, and S. N. Bagayev, Quant. Electron. 47, 806 (2017).
  19. S. V. Chepurov, A. A. Lugovoy, O. N. Prudnikov, A. V. Taichenachev, and S. N. Bagayev, Quant. Electron. 49, 412 (2019).
  20. N. Huntemann, M. Okhapkin, B. Lipphardt, S.Weyers, Chr. Tamm, and E. Peik, Phys. Rev. Lett. 108, 090801 (2012).
  21. N. Huntemann, B. Lipphardt, M. Okhapkin, Chr. Tamm, E. Peik, A. V. Taichenachev and V. I. Yudin, Phys. Rev. Lett. 109, 213002 (2012).
  22. M. A. Aksenov, I. V. Zalivako, I. A. Semerikov, A. S. Borisenko, N. V. Semenin, P. L. Sidorov, A. K. Fedorov, K. Yu. Khabarova, and N. N. Kolachevsky, Phys. Rev. A 107, 052612 (2023).
  23. D. S. Krysenko and O. N. Prudnikov, JETP 137, 239 (2023).
  24. O. N. Prudnikov, A. V. Taichenachev, A.M. Tumaikin and V. I. Yudin, JETP 88, 433 (1999).
  25. E. Biemontyz, J-F Dutrieuxz, I. Martinx, and P. Quinetz, J. Phys. B: At. Mol. Opt. Phys. 31, 3321 (1998.)
  26. A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and L. Hollberg, Phys. Rev. A 63, 033402 (2001).
  27. A. P. Kulosa, O. N. Prudnikov, D. Vadlejch, H. A. Furst, A. A. Kirpichnikova, A. V. Taichenachev, V. I. Yudin, and T. E. Mehlstaubler, New J. Phys. 25 053008 (2023).
  28. S. V. Chepurov, N. A. Pavlov, A. A. Lugovoy, S. N. Bagayev, and A. V. Taichenachev, Quantum Electronics 51, 473 (2021).
  29. C. A. Schrama, E. Peik, W. W. Smith, and H. Walther, Opt. Comm. 101, 32 (1993).
  30. A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, Phys. Rev. A 67, 033810 (2003).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024