Антикоррозионные ПЭО-покрытия, импрегнированные ингибиторами коррозии, на сплаве АМг3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Защитное покрытие с микротрубчатой структурой было сформировано методом плазменного электролитического оксидирования на алюминиевом сплаве АМг3 (система Al-Mg) в тартратно-фторидном электролите. Данный защитный слой был дополнительно модифицирован с использованием ингибиторов коррозии азольной группы (1,2,4-триазол, бензотриазол) и полимера (поливинилиденфторид). Изучены морфология, состав, механизм коррозии и защитные свойства сформированных покрытий.

Полный текст

Доступ закрыт

Об авторах

А. С. Гнеденков

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук

Автор, ответственный за переписку.
Email: asg17@mail.com
Россия, Владивосток

С. Л. Синебрюхов

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Россия, Владивосток

Я. И. Кононенко

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Россия, Владивосток

С. В. Гнеденков

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Россия, Владивосток

Список литературы

  1. Dai W.B., Yuan L.X., Li C.Y., He D., Jia D.W., Zhang Y.M. The effect of surface roughness of the substrate on fatigue life of coated aluminum alloy by micro-arc oxidation // J. Alloys Compd. 2018. V. 765. P. 1018.
  2. Ji S., Weng Y., Wu Z., Ma Z., Tian X., Fu R.K.Y., Lin H., Wu G., Chu P.K., Pan F. Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy // J. Alloys Compd. 2017. V. 710. P. 452.
  3. Truong P. Van, Bo N. Van, Minh N. Van, Anh N.V., Suresh Kumar G., Shkir M. Investigation of corrosion and wear resistance of PEO coated D16T aluminium alloys in the marine tropical climate conditions // Mater. Chem. Phys. 2022. V. 290. P. 126587.
  4. Zhu M., Song Y., Liu Z., Xu D., Dong K., Han E.H. Optimization of thermal control and corrosion resistance of PEO coatings on 7075 aluminum alloy by frequency alteration // Surf. Coat. Technol. 2022. V. 446. P. 128797.
  5. Zeng Q., Min X., Luo Z., Dai H., Liao B. In-situ preparation of superhydrophobic Zn-Al layered double hydroxide coatings for corrosion protection of aluminum alloy // Mater. Lett. 2022. V. 328. P. 133077.
  6. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Imshinetskiy I.M., Vyaliy I.E., Gnedenkov S.V. Effect of Microstructure on the Corrosion Resistance of TIG Welded 1579 Alloy // Materials. 2019. V. 12. № 16. P. 2615.
  7. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Gnedenkov S.V. Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8Ca alloy: Formation and corrosion behaviour // J. Magnes. Alloy. 2023. V. 11. № 12. P. 4468.
  8. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Sukhoverkhov S.V., Gnedenkov S.V. New Polycaprolactone-Containing Self-Healing Coating Design for Enhance Corrosion Resistance of the Magnesium and Its Alloys // Polymers. 2023. V. 15. № 1. P. 202.
  9. Гнеденков С.В., Синебрюхов С.Л., Хрисанфова О.А., Егоркин В.С., Машталяр Д.В., Сидорова М.В., Гнеденков А.С., Волкова Е.Ф. Свойства покрытий, сформированных на магниевом сплаве МА8 методом плазменного электролитического оксидирования // Вестник ДВО РАН. 2010. Т. 5. № 153. С. 35.
  10. Zehra T., Fattah-alhosseini A., Kaseem M. Surface properties of plasma electrolytic oxidation coating modified by polymeric materials: A review // Prog. Org. Coat. 2022. V. 171. P. 107053.
  11. Babaei K., Fattah-alhosseini A., Molaei M. The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review // Surf. Interfaces. 2020. V. 21. P. 100677.
  12. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А.В., Гнеденков А.С. Композиционные защитные покрытия на поверхности никелида титана // Коррозия: материалы, защита. 2007. Т. 2. С. 20.
  13. Asan G., Asan A. Inhibitor effect of nicotinamide on corrosion of aluminum // J. Mol. Struct. 2020. V. 1201. P. 127184.
  14. Liu X., Wang J., Hu W. Synthesis, inhibition behavior and recycling of Fe3O4@ZnAl-MoO4 LDH nanocomposite inhibitor // J. Alloys Compd. 2019. V. 801. P. 489.
  15. Nnaji N., Nwaji N., Mack J., Nyokong T. Ball-type phthalocyanines and reduced graphene oxide nanoparticles as separate and combined corrosion inhibitors of aluminium in HCl // J. Mol. Struct. 2021. V. 1236. P. 130279.
  16. Wang D., Wu M., Ming J., Shi J. Inhibitive effect of sodium molybdate on corrosion behaviour of AA6061 aluminium alloy in simulated concrete pore solutions // Constr. Build. Mater. 2021. V. 270. P. 121463.
  17. Farahani M., Yousefnia H., Seyedraoufi Z.S., Shajari Y. The effect of benzotriazole gradual change on the corrosion performance of nanocomposite multilayer self-healing coating based on Titania-Alumina-Benzotriazole on AA7075 // Ceram. Int. 2019. V. 45. № 13. P. 16584.
  18. Zheludkevich M.L., Yasakau K.A., Poznyak S.K., Ferreira M.G.S. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy // Corros. Sci. 2005. V. 47. № 12. P. 3368.
  19. Wieduwilt F., Lenth C., Ctistis G., Plachetka U., Möller M., Wackerbarth H. Evaluation of an on-site surface enhanced Raman scattering sensor for benzotriazole // Sci. Rep. 2020. V. 10. № 1. P. 8260.
  20. Chan H.Y.H., Weaver M.J. Vibrational structural analysis of benzotriazole adsorption and phase film formation on copper using surface-enhanced Raman spectroscopy // Langmuir. 1999. V. 15. № 9. P. 3348.
  21. Thomas S., Venkateswaran S., Kapoor S., D’Cunha R., Mukherjee T. Surface enhanced Raman scattering of benzotriazole: A molecular orientational study // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004. V. 60. № 1–2. P. 25.
  22. Krishnakumar V., Xavier R.J. FT Raman and FT–IR spectral studies of 3-mercapto-1,2,4-triazole // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004. V. 60. № 3. P. 709.
  23. Subashchandrabose S., Krishnan A.R., Saleem H., Thanikachalam V., Manikandan G., Erdogdu Y. FT-IR, FT-Raman, NMR spectral analysis and theoretical NBO, HOMO-LUMO analysis of bis(4-amino-5-mercapto-1,2,4-triazol-3-yl)ethane by ab initio HF and DFT methods // J. Mol. Struct. 2010. V. 981. № 1–3. P. 59.
  24. Sherif E.S.M., Erasmus R.M., Comins J.D. Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1,2,4-triazole // J. Colloid. Interface Sci. 2007. V. 309. № 2. P. 470.
  25. Muniz-Miranda M., Muniz-Miranda F., Caporali S. SERS and DFT study of copper surfaces coated with corrosion inhibitor // Beilstein J. Nanotechnol. 2014. V. 5. P. 2489.
  26. Salinas-Luna J., Mentado-Morales J., Castro-López J. Raman spectroscopy and SERS by using Ag-nano-wires for detecting 1,2,4-Triazole in aqueous phase // Phys. Scr. 2024. V. 99. № 5. P. 055550.
  27. Meng S., Zhao Y., Xue J., Zheng X. Environment-dependent conformation investigation of 3-amino-1,2,4-triazole (3-AT): Raman Spectroscopy and density functional theory // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018. V. 190. P. 478.
  28. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D. V., Vyaliy I.E., Egorkin V.S., Gnedenkov S.V. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 1: Specificity of development // Materials. 2018. V. 11. № 10. P. 2053.
  29. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Hybrid Coatings for Active Protection against Corrosion of Mg and Its Alloys // Polymers. 2023. V. 15. № 14. P. 3035.
  30. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D. V., Vyaliy I.E., Egorkin V.S., Gnedenkov S.V. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection // Materials. 2018. V. 11. № 11. P. 2177.
  31. Finšgar M., Milošev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review // Corros. Sci. 2010. V. 52. № 9. P. 2737.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Стадии формирования КП И ГП.

Скачать (438KB)
3. Рис. 2. Данные СЭМ–ЭДС-анализа морфологии и элементного состава базового ПЭО-покрытия (а) и КП-Т-24 (б). Показано распределение элементов в трех точках поперечного сечения образцов КП-Т-24 и КП-Б-24 (в). Стрелкой показано место на КП КП-Т-24 (в качестве примера), где были сняты спектры ЭДС.

Скачать (676KB)
4. Рис. 3. Изображение исследуемой области образца КП-Б-24 (а) и КП-Т-24 (б) 2D-карта распределения бензотриазола (а) и 1,2,4-триазола (б), спектр комбинационного рассеяния порошка бензотриазола (а) и 1,2,4-триазола (б), а также спектры комбинационного рассеяния участков поверхности, соответствующие областям с низким (1) и высоким (2) содержанием ингибитора. Представлены спектры порошка бензотриазола (3) и 1,2,4-триазола (4).

Скачать (451KB)
5. Рис. 4. Диаграммы Найквиста (а1, б1) и Боде (а2, б2), (а3, б3) для образцов с 1,2,4-триазол– (а) и бензотриазолсодержащими покрытиями (б) после 1 ч выдержки в 3.5% растворе NaCl. Исследованы образцы: ПЭО, КП-Т-0.5/1/2/24 и КП-Б-0.5/1/2/24 (1, 2/3/4/5, 6/7/8/9, соответственно)

Скачать (369KB)
6. Рис. 5. Диаграммы Найквиста и Боде для КП без ингибитора и двух типов ГП после 1 ч выдержки в 3.5% растворе NaCl. Исследованы образцы: КП-П, ГП-Т-24-П и ГП-Б-24-П (1, 2, 3, соответственно).

Скачать (263KB)
7. Рис. 6. (а) SVET-карты и оптические изображения сканированных участков образцов с разными типами покрытий. (б) 3D-карты интенсивности локальной электрохимической активности образцов. Исследованы образцы: ПЭО, КП-Б-24 и КП-Т-24 (1, 2, 3, соответственно).

Скачать (960KB)
8. Рис. 7. SIET-карты распределения pH и оптические изображения сканированных участков образцов с разными типами покрытий. Исследованы образцы: ПЭО, КП-Б-24 и КП-Т-24 (1, 2, 3, соответственно).

Скачать (532KB)
9. Рис. 8. Механизм защиты от коррозии образца алюминиевого сплава с азолсодержащим ПЭО-слоем в присутствии хлорид-ионов. В качестве примера действия ингибитора коррозии использован бензотриазол.

Скачать (244KB)

© Российская академия наук, 2025