Anti-corrosion PEO-coatings impregnated with corrosion inhibitors on AMg3 alloy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Protective coating with microtubular structure was formed by plasma electrolytic oxidation on aluminum alloy AMg3 (Al–Mg system) in tartrate-fluoride electrolyte. This protective layer was additionally modified using azole group corrosion inhibitors (1,2,4-triazole, benzotriazole) and polymer (polyvinylidene fluoride). The morphology, composition, corrosion mechanism and protective properties of the formed coatings were studied.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Gnedenkov

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: asg17@mail.com
Ресей, Vladivostok

S. Sinebryukhov

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: asg17@mail.com
Ресей, Vladivostok

Ya. Kononenko

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: asg17@mail.com
Ресей, Vladivostok

S. Gnedenkov

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: asg17@mail.com
Ресей, Vladivostok

Әдебиет тізімі

  1. Dai W.B., Yuan L.X., Li C.Y., He D., Jia D.W., Zhang Y.M. The effect of surface roughness of the substrate on fatigue life of coated aluminum alloy by micro-arc oxidation // J. Alloys Compd. 2018. V. 765. P. 1018.
  2. Ji S., Weng Y., Wu Z., Ma Z., Tian X., Fu R.K.Y., Lin H., Wu G., Chu P.K., Pan F. Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy // J. Alloys Compd. 2017. V. 710. P. 452.
  3. Truong P. Van, Bo N. Van, Minh N. Van, Anh N.V., Suresh Kumar G., Shkir M. Investigation of corrosion and wear resistance of PEO coated D16T aluminium alloys in the marine tropical climate conditions // Mater. Chem. Phys. 2022. V. 290. P. 126587.
  4. Zhu M., Song Y., Liu Z., Xu D., Dong K., Han E.H. Optimization of thermal control and corrosion resistance of PEO coatings on 7075 aluminum alloy by frequency alteration // Surf. Coat. Technol. 2022. V. 446. P. 128797.
  5. Zeng Q., Min X., Luo Z., Dai H., Liao B. In-situ preparation of superhydrophobic Zn-Al layered double hydroxide coatings for corrosion protection of aluminum alloy // Mater. Lett. 2022. V. 328. P. 133077.
  6. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Imshinetskiy I.M., Vyaliy I.E., Gnedenkov S.V. Effect of Microstructure on the Corrosion Resistance of TIG Welded 1579 Alloy // Materials. 2019. V. 12. № 16. P. 2615.
  7. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Gnedenkov S.V. Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8Ca alloy: Formation and corrosion behaviour // J. Magnes. Alloy. 2023. V. 11. № 12. P. 4468.
  8. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Sukhoverkhov S.V., Gnedenkov S.V. New Polycaprolactone-Containing Self-Healing Coating Design for Enhance Corrosion Resistance of the Magnesium and Its Alloys // Polymers. 2023. V. 15. № 1. P. 202.
  9. Гнеденков С.В., Синебрюхов С.Л., Хрисанфова О.А., Егоркин В.С., Машталяр Д.В., Сидорова М.В., Гнеденков А.С., Волкова Е.Ф. Свойства покрытий, сформированных на магниевом сплаве МА8 методом плазменного электролитического оксидирования // Вестник ДВО РАН. 2010. Т. 5. № 153. С. 35.
  10. Zehra T., Fattah-alhosseini A., Kaseem M. Surface properties of plasma electrolytic oxidation coating modified by polymeric materials: A review // Prog. Org. Coat. 2022. V. 171. P. 107053.
  11. Babaei K., Fattah-alhosseini A., Molaei M. The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review // Surf. Interfaces. 2020. V. 21. P. 100677.
  12. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А.В., Гнеденков А.С. Композиционные защитные покрытия на поверхности никелида титана // Коррозия: материалы, защита. 2007. Т. 2. С. 20.
  13. Asan G., Asan A. Inhibitor effect of nicotinamide on corrosion of aluminum // J. Mol. Struct. 2020. V. 1201. P. 127184.
  14. Liu X., Wang J., Hu W. Synthesis, inhibition behavior and recycling of Fe3O4@ZnAl-MoO4 LDH nanocomposite inhibitor // J. Alloys Compd. 2019. V. 801. P. 489.
  15. Nnaji N., Nwaji N., Mack J., Nyokong T. Ball-type phthalocyanines and reduced graphene oxide nanoparticles as separate and combined corrosion inhibitors of aluminium in HCl // J. Mol. Struct. 2021. V. 1236. P. 130279.
  16. Wang D., Wu M., Ming J., Shi J. Inhibitive effect of sodium molybdate on corrosion behaviour of AA6061 aluminium alloy in simulated concrete pore solutions // Constr. Build. Mater. 2021. V. 270. P. 121463.
  17. Farahani M., Yousefnia H., Seyedraoufi Z.S., Shajari Y. The effect of benzotriazole gradual change on the corrosion performance of nanocomposite multilayer self-healing coating based on Titania-Alumina-Benzotriazole on AA7075 // Ceram. Int. 2019. V. 45. № 13. P. 16584.
  18. Zheludkevich M.L., Yasakau K.A., Poznyak S.K., Ferreira M.G.S. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy // Corros. Sci. 2005. V. 47. № 12. P. 3368.
  19. Wieduwilt F., Lenth C., Ctistis G., Plachetka U., Möller M., Wackerbarth H. Evaluation of an on-site surface enhanced Raman scattering sensor for benzotriazole // Sci. Rep. 2020. V. 10. № 1. P. 8260.
  20. Chan H.Y.H., Weaver M.J. Vibrational structural analysis of benzotriazole adsorption and phase film formation on copper using surface-enhanced Raman spectroscopy // Langmuir. 1999. V. 15. № 9. P. 3348.
  21. Thomas S., Venkateswaran S., Kapoor S., D’Cunha R., Mukherjee T. Surface enhanced Raman scattering of benzotriazole: A molecular orientational study // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004. V. 60. № 1–2. P. 25.
  22. Krishnakumar V., Xavier R.J. FT Raman and FT–IR spectral studies of 3-mercapto-1,2,4-triazole // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004. V. 60. № 3. P. 709.
  23. Subashchandrabose S., Krishnan A.R., Saleem H., Thanikachalam V., Manikandan G., Erdogdu Y. FT-IR, FT-Raman, NMR spectral analysis and theoretical NBO, HOMO-LUMO analysis of bis(4-amino-5-mercapto-1,2,4-triazol-3-yl)ethane by ab initio HF and DFT methods // J. Mol. Struct. 2010. V. 981. № 1–3. P. 59.
  24. Sherif E.S.M., Erasmus R.M., Comins J.D. Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1,2,4-triazole // J. Colloid. Interface Sci. 2007. V. 309. № 2. P. 470.
  25. Muniz-Miranda M., Muniz-Miranda F., Caporali S. SERS and DFT study of copper surfaces coated with corrosion inhibitor // Beilstein J. Nanotechnol. 2014. V. 5. P. 2489.
  26. Salinas-Luna J., Mentado-Morales J., Castro-López J. Raman spectroscopy and SERS by using Ag-nano-wires for detecting 1,2,4-Triazole in aqueous phase // Phys. Scr. 2024. V. 99. № 5. P. 055550.
  27. Meng S., Zhao Y., Xue J., Zheng X. Environment-dependent conformation investigation of 3-amino-1,2,4-triazole (3-AT): Raman Spectroscopy and density functional theory // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018. V. 190. P. 478.
  28. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D. V., Vyaliy I.E., Egorkin V.S., Gnedenkov S.V. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 1: Specificity of development // Materials. 2018. V. 11. № 10. P. 2053.
  29. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Hybrid Coatings for Active Protection against Corrosion of Mg and Its Alloys // Polymers. 2023. V. 15. № 14. P. 3035.
  30. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D. V., Vyaliy I.E., Egorkin V.S., Gnedenkov S.V. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection // Materials. 2018. V. 11. № 11. P. 2177.
  31. Finšgar M., Milošev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review // Corros. Sci. 2010. V. 52. № 9. P. 2737.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Stages of formation of CP and GP.

Жүктеу (438KB)
3. Fig. 2. Data of SEM-EDS analysis of the morphology and elemental composition of the base PEO coating (a) and KP-T-24 (b). The distribution of elements at three points of the cross section of the KP-T-24 and KP-B-24 samples (c) is shown. The arrow shows the place on the KP of KP-T-24 (as an example) where the EDS spectra were recorded.

Жүктеу (676KB)
4. Fig. 3. Image of the studied area of the sample KP-B-24 (a) and KP-T-24 (b) 2D map of the distribution of benzotriazole (a) and 1,2,4-triazole (b), Raman spectrum of benzotriazole powder (a) and 1,2,4-triazole (b), as well as Raman spectra of the surface areas corresponding to areas with low (1) and high (2) inhibitor content. The spectra of benzotriazole (3) and 1,2,4-triazole (4) powder are shown.

Жүктеу (451KB)
5. Fig. 4. Nyquist (a1, b1) and Bode (a2, b2), (a3, b3) diagrams for samples with 1,2,4-triazole– (a) and benzotriazole-containing coatings (b) after 1 h of exposure in a 3.5% NaCl solution. The studied samples were: PEO, KP-T-0.5/1/2/24 and KP-B-0.5/1/2/24 (1, 2/3/4/5, 6/7/8/9, respectively)

Жүктеу (369KB)
6. Fig. 5. Nyquist and Bode plots for KP without inhibitor and two types of GP after 1 h of exposure in 3.5% NaCl solution. The studied samples were: KP-P, GP-T-24-P and GP-B-24-P (1, 2, 3, respectively).

Жүктеу (263KB)
7. Fig. 6. (a) SVET maps and optical images of scanned areas of samples with different types of coatings. (b) 3D maps of the intensity of local electrochemical activity of the samples. The studied samples were: PEO, KP-B-24 and KP-T-24 (1, 2, 3, respectively).

Жүктеу (960KB)
8. Fig. 7. SIET maps of pH distribution and optical images of scanned areas of samples with different types of coatings. The studied samples were: PEO, KP-B-24 and KP-T-24 (1, 2, 3, respectively).

Жүктеу (532KB)
9. Fig. 8. Mechanism of corrosion protection of an aluminum alloy sample with an azole-containing PEO layer in the presence of chloride ions. Benzotriazole was used as an example of the action of a corrosion inhibitor.

Жүктеу (244KB)

© Russian Academy of Sciences, 2025