Automated synthesis of [N-methyl-11C]choline, radiopharmaceutical for tumor imaging by PET

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An automated method has been developed for the synthesis of [N-methyl-11C]choline, a radiopharmaceutical (RP) for the diagnosis of cancer using positron emission tomography (PET). The synthesis was carried out on a home-made module, using combined technology of on-line 11C-methylation processes and solid-phase extraction methods. The radiochemical yield of [N-methyl-11C]choline was 80% (based on the activity of the methylating agent, [11C]CH3I, decay corrected), which ensures the production of several clinical doses of radiopharmaceutical in one batch. [N-methyl-11C]choline was obtained with a radiochemical purity of more than 99% and an amount of 2-dimethylaminoethanol (the main chemical impurity) of 0.06 mg/mL, which meets the requirements of the Russian and European Pharmacopoeia.

全文:

受限制的访问

作者简介

D. Vaulina

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
俄罗斯联邦, St. Petersburg, 197022

O. Kuznetsova

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
俄罗斯联邦, St. Petersburg, 197022

V. Orlovskaya

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
俄罗斯联邦, St. Petersburg, 197022

O. Fedorova

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
俄罗斯联邦, St. Petersburg, 197022

R. Krasikova

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: raisa@ihb.spb.ru
俄罗斯联邦, St. Petersburg, 197022

参考

  1. Barnes C., Nair M., Aboagye E.O., Archibald S.J., Allot L. // React. Chem. Eng. 2022. Vol. 7. P. 2265–2279. https://doi.org/10.1039/D2RE00219A
  2. Mock B. // Curr. Org. Chem. 2013. Vol. 2013. N 17. P. 2119–2126.
  3. Lee J.A. // Bull. Korean Chem. Soc. 2020. Vol. 41. N 8. P. 799–804.
  4. Кузнецова О.Ф., Орловская В.В., Ваулина Д.Д., Оболенцев В.Ю., Демьянов А.С., Красикова Р.Н. // Радиохимия. 2023. Т. 65. № 6. С. 565–574. https://doi.org/10.31857/S0033831123060096
  5. Скворцова Т.Ю., Савинцева Ж.И., Захс Д.В., Тюрин Р.В., Гурчин А.Ф., Холявин А.И., Трофимова Т.Н. // Лучевая диагностика и терапия. 2021. Т. 12. № 1. С.49–58.
  6. Shegani A., Kealey S., Luzi F., Basagni F., Machado J.D.M., Ekici S.D., Ferocino A., Gee A.D., Bongarzone S. // Chem Rev. 2023 Vol. 123. N 1. P. 105–229. https://doi.org/10.1021/acs.chemrev.2c00398
  7. Rosen M.A., Jones R.M., Yano Y., Budinger T.F. // J. Nucl. Med. 1985. Vol. 26. P. 1424−1428.
  8. Testart Dardel N., Gómez-Río M., Triviño-Ibáñez E., Llamas-Elvira J.M. // Clin. Transl. Imaging. 2017. Vol. 5. P. 101–119. https://doi.org/10.1007/s40336-016-0200-0
  9. Yamamoto Y., Nishiyama Y., Kameyama R., Okano K., Kashiwagi H., Deguchi A., Kaji M., Ohkawa M. // J. Nucl. Med. 2008. Vol. 49. P. 1245–1248. https://doi.org/10.2967/jnumed.108.052639
  10. Garcia J.R., Jorcano S., Soler M., Linero D., Moragas M., Riera E., Miralbell R., Lomeña F. // Q. J. Nucl. Med. Mol. Imaging. 2015. Vol. 59. P. 342–350. PMID: 24844254
  11. Graziani T., Ceci F., Castellucci P., Polverari G., Lima G.M., Lodi F., Morganti A.G., Ardizzoni A., Schiavina R., Fanti S. // Eur. J. Nucl. Med. Mol. Imaging. 2016. Vol. 43. P. 1971–1979. https://doi.org/10.1007/s00259-016-3428-z
  12. Асланиди И.П., Пурсанова Д.М., Мухортова О.В., Сильченков А.В., Рощин Д.А., Корякин А.В., Иванов С.А., Широкорад В.И. // Онкоурология. 2015. Т. 11. С. 79–86. https://doi.org/10.17 650/1726-9776-2015-11-3-79-86
  13. Shao X., Hockley B.G., Hoareau R., Schnau P.L., Scott P.J. // Appl. Radiat. Isot. 2011. Vol. 69. P. 403–409. https://doi.org/10.1016/j.apradiso.2010.09.022
  14. Biasiotto G., Bertagna F., Biasiotto U., Rodella C., Bosio G., Caimi L., Bettinsoli G., Giubbini R. // Med Chem. 2012. Vol. 8. N 6. P. 1182–1189. https://doi.org/10.2174/1573406411208061182
  15. Szydło M., Chmura A., Kowalski T., Pocięgiel M., d'Amico A., Sokół M. // Contemp. Oncol. (Poznan). 2018. Vol. 22. N 4. P. 260–265. https://doi.org/10.5114/wo.2018.81751
  16. Jiang H., Fang P., Jacobson M.S., Jain M.K., Cai H. // Appl. Radiat. Isot. 2021. Vol. 168. ID 109560. https://doi.org/10.1016/j.apradiso.2020.109560
  17. Mallapura H., Tanguy L., Mahfuz S., Bylund L., Långström B., Halldin C., Nag S. // Pharmaceuticals. 2024. Vol. 17. P. 250. https://doi.org/10.3390/ph17020250
  18. Hara T., Yuasa M. // Appl. Radiat. Isot. 1999. Vol. 50. P. 531−533. https://doi.org/10.1016/s0969-8043(98)00097-9
  19. Hara T., Kosaka N., Kishi H. // J. Nucl. Med. 1998. Vol. 39. P. 990–995. PMID: 9627331
  20. Pascali C., Bogni A., Iwata R., Decise D., Crippa F., Bombardieri E. // J. Label. Compd. Radiopharm. 1999. Vol. 42. P. 715–724.
  21. Pascali C., Bogni A., Iwata R., Cambie M., Bombardieri E. // J. Label. Compd. Radiopharm. 2000. Vol. 43. P. 195–203.
  22. European Pharmacopoeia, 8.8. Strasbourg, 2016. P. 5987–5989.
  23. Кузнецова О.Ф., Федорова О.С., Васильев Д.А., Симонова Т.П., Надер М., Красикова Р.Н. // Радиохимия. 2003. Т. 45. № 4. С. 342–345.
  24. Lodi F., Malizia C., Castellucci P., Cicoria G., Fanti S., Boschi S. // Nucl. Med. Biol. 2012. Vol. 39. P. 447–460. https://doi.org/10.1016/j.nucmedbio.2011.10.016

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Display view of a laptop in the synthesis of [11C]choline with comments.

下载 (287KB)
3. Scheme 1. Synthesis of [11C]choline based on the production of [11C]CH3I by the “wet” method.

下载 (57KB)
4. Fig. 2. HPLC data for [11C]choline analysis: top – choline standard 7 mg/mL, UV detector (210 nm); bottom – [11C]choline sample being analyzed, γ-detector; X-Bridge C18 column (150 × 4.6 mm), eluent: aqueous solution of 0.1% heptafluorobutyric acid + 2% acetonitrile (v/v), flow rate – 1.5 mL/min.

下载 (68KB)
5. Fig. 3. HPLC chromatogram of a water sample; X-Bridge C18 column (150 × 4.6 mm), eluent – ​​aqueous solution of 0.1% heptafluorobutyric acid + 2% acetonitrile (v/v), flow rate – 1.5 ml/min; UV 210 nm.

下载 (34KB)

版权所有 © Russian Academy of Sciences, 2024