Automated synthesis of [N-methyl-11C]choline, radiopharmaceutical for tumor imaging by PET

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An automated method has been developed for the synthesis of [N-methyl-11C]choline, a radiopharmaceutical (RP) for the diagnosis of cancer using positron emission tomography (PET). The synthesis was carried out on a home-made module, using combined technology of on-line 11C-methylation processes and solid-phase extraction methods. The radiochemical yield of [N-methyl-11C]choline was 80% (based on the activity of the methylating agent, [11C]CH3I, decay corrected), which ensures the production of several clinical doses of radiopharmaceutical in one batch. [N-methyl-11C]choline was obtained with a radiochemical purity of more than 99% and an amount of 2-dimethylaminoethanol (the main chemical impurity) of 0.06 mg/mL, which meets the requirements of the Russian and European Pharmacopoeia.

Full Text

Restricted Access

About the authors

D. D. Vaulina

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
Russian Federation, St. Petersburg, 197022

O. F. Kuznetsova

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
Russian Federation, St. Petersburg, 197022

V. V. Orlovskaya

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
Russian Federation, St. Petersburg, 197022

O. S. Fedorova

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Email: raisa@ihb.spb.ru
Russian Federation, St. Petersburg, 197022

R. N. Krasikova

Bechtereva Institute of the Human Brain, Russian Academy of Sciences

Author for correspondence.
Email: raisa@ihb.spb.ru
Russian Federation, St. Petersburg, 197022

References

  1. Barnes C., Nair M., Aboagye E.O., Archibald S.J., Allot L. // React. Chem. Eng. 2022. Vol. 7. P. 2265–2279. https://doi.org/10.1039/D2RE00219A
  2. Mock B. // Curr. Org. Chem. 2013. Vol. 2013. N 17. P. 2119–2126.
  3. Lee J.A. // Bull. Korean Chem. Soc. 2020. Vol. 41. N 8. P. 799–804.
  4. Кузнецова О.Ф., Орловская В.В., Ваулина Д.Д., Оболенцев В.Ю., Демьянов А.С., Красикова Р.Н. // Радиохимия. 2023. Т. 65. № 6. С. 565–574. https://doi.org/10.31857/S0033831123060096
  5. Скворцова Т.Ю., Савинцева Ж.И., Захс Д.В., Тюрин Р.В., Гурчин А.Ф., Холявин А.И., Трофимова Т.Н. // Лучевая диагностика и терапия. 2021. Т. 12. № 1. С.49–58.
  6. Shegani A., Kealey S., Luzi F., Basagni F., Machado J.D.M., Ekici S.D., Ferocino A., Gee A.D., Bongarzone S. // Chem Rev. 2023 Vol. 123. N 1. P. 105–229. https://doi.org/10.1021/acs.chemrev.2c00398
  7. Rosen M.A., Jones R.M., Yano Y., Budinger T.F. // J. Nucl. Med. 1985. Vol. 26. P. 1424−1428.
  8. Testart Dardel N., Gómez-Río M., Triviño-Ibáñez E., Llamas-Elvira J.M. // Clin. Transl. Imaging. 2017. Vol. 5. P. 101–119. https://doi.org/10.1007/s40336-016-0200-0
  9. Yamamoto Y., Nishiyama Y., Kameyama R., Okano K., Kashiwagi H., Deguchi A., Kaji M., Ohkawa M. // J. Nucl. Med. 2008. Vol. 49. P. 1245–1248. https://doi.org/10.2967/jnumed.108.052639
  10. Garcia J.R., Jorcano S., Soler M., Linero D., Moragas M., Riera E., Miralbell R., Lomeña F. // Q. J. Nucl. Med. Mol. Imaging. 2015. Vol. 59. P. 342–350. PMID: 24844254
  11. Graziani T., Ceci F., Castellucci P., Polverari G., Lima G.M., Lodi F., Morganti A.G., Ardizzoni A., Schiavina R., Fanti S. // Eur. J. Nucl. Med. Mol. Imaging. 2016. Vol. 43. P. 1971–1979. https://doi.org/10.1007/s00259-016-3428-z
  12. Асланиди И.П., Пурсанова Д.М., Мухортова О.В., Сильченков А.В., Рощин Д.А., Корякин А.В., Иванов С.А., Широкорад В.И. // Онкоурология. 2015. Т. 11. С. 79–86. https://doi.org/10.17 650/1726-9776-2015-11-3-79-86
  13. Shao X., Hockley B.G., Hoareau R., Schnau P.L., Scott P.J. // Appl. Radiat. Isot. 2011. Vol. 69. P. 403–409. https://doi.org/10.1016/j.apradiso.2010.09.022
  14. Biasiotto G., Bertagna F., Biasiotto U., Rodella C., Bosio G., Caimi L., Bettinsoli G., Giubbini R. // Med Chem. 2012. Vol. 8. N 6. P. 1182–1189. https://doi.org/10.2174/1573406411208061182
  15. Szydło M., Chmura A., Kowalski T., Pocięgiel M., d'Amico A., Sokół M. // Contemp. Oncol. (Poznan). 2018. Vol. 22. N 4. P. 260–265. https://doi.org/10.5114/wo.2018.81751
  16. Jiang H., Fang P., Jacobson M.S., Jain M.K., Cai H. // Appl. Radiat. Isot. 2021. Vol. 168. ID 109560. https://doi.org/10.1016/j.apradiso.2020.109560
  17. Mallapura H., Tanguy L., Mahfuz S., Bylund L., Långström B., Halldin C., Nag S. // Pharmaceuticals. 2024. Vol. 17. P. 250. https://doi.org/10.3390/ph17020250
  18. Hara T., Yuasa M. // Appl. Radiat. Isot. 1999. Vol. 50. P. 531−533. https://doi.org/10.1016/s0969-8043(98)00097-9
  19. Hara T., Kosaka N., Kishi H. // J. Nucl. Med. 1998. Vol. 39. P. 990–995. PMID: 9627331
  20. Pascali C., Bogni A., Iwata R., Decise D., Crippa F., Bombardieri E. // J. Label. Compd. Radiopharm. 1999. Vol. 42. P. 715–724.
  21. Pascali C., Bogni A., Iwata R., Cambie M., Bombardieri E. // J. Label. Compd. Radiopharm. 2000. Vol. 43. P. 195–203.
  22. European Pharmacopoeia, 8.8. Strasbourg, 2016. P. 5987–5989.
  23. Кузнецова О.Ф., Федорова О.С., Васильев Д.А., Симонова Т.П., Надер М., Красикова Р.Н. // Радиохимия. 2003. Т. 45. № 4. С. 342–345.
  24. Lodi F., Malizia C., Castellucci P., Cicoria G., Fanti S., Boschi S. // Nucl. Med. Biol. 2012. Vol. 39. P. 447–460. https://doi.org/10.1016/j.nucmedbio.2011.10.016

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Display view of a laptop in the synthesis of [11C]choline with comments.

Download (287KB)
3. Scheme 1. Synthesis of [11C]choline based on the production of [11C]CH3I by the “wet” method.

Download (57KB)
4. Fig. 2. HPLC data for [11C]choline analysis: top – choline standard 7 mg/mL, UV detector (210 nm); bottom – [11C]choline sample being analyzed, γ-detector; X-Bridge C18 column (150 × 4.6 mm), eluent: aqueous solution of 0.1% heptafluorobutyric acid + 2% acetonitrile (v/v), flow rate – 1.5 mL/min.

Download (68KB)
5. Fig. 3. HPLC chromatogram of a water sample; X-Bridge C18 column (150 × 4.6 mm), eluent – ​​aqueous solution of 0.1% heptafluorobutyric acid + 2% acetonitrile (v/v), flow rate – 1.5 ml/min; UV 210 nm.

Download (34KB)

Copyright (c) 2024 Russian Academy of Sciences