Diffusion of radioactive waste elements from underground water and leachates of phosphate waste forms in pore solution of clay materials

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using through diffusion method at room temperature, migration of RW element simulators (P, Se, Br, Mo, Cs, U) in compacted samples of clay materials of various mineral compositions was studied during porous diffusion from model solutions: underground water and leachates of phosphate waste forms having a total salt content of up to 500 mg/L. Based on the results of experiments, effective diffusion coefficients and sorption distribution coefficients of elements in barrier materials were determined. Numerical models are proposed to describe diffusion transfer of selenium, cesium and uranium depending on porosity, mineral composition of materials, and concentration of elements in pore solution. Patterns of diffusion of elements from solutions of different salt composition were revealed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Martynov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: mark0s@mail.ru
Ресей, Leninskii pr. 31, korp. 4, Moscow, 119071

E. Zakharova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mark0s@mail.ru
Ресей, Leninskii pr. 31, korp. 4, Moscow, 119071

Әдебиет тізімі

  1. Sellin P., Leupin O.X. // Clays Clay Miner. 2013. Vol. 61. N 6. P. 477.
  2. Wang C., Myshkin V.F., Khan V.A., Panamareva A.N. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 3401.
  3. Мартынов К.В., Захарова Е.В. // Тр. Всерос. ежегод. семинара по экспериментальной минералогии, петрологии и геохимии (Москва, 2022) / Отв. ред. О.А. Луканин. М: ГЕОХИ РАН, 2022. С 379.
  4. Мартынов К.В., Коневник Ю.В., Захарова Е.В. // Радиохимия. 2023. Т. 65. № 4. С. 364.
  5. Ильина О.А., Крупская В.В., Винокуров С.Е., Калмыков С.Н. // Радиоактивные отходы. 2019. № 4(9). С. 71.
  6. Абрамов А.А., Большов Л.А., Дорофеев А.Н., Игин И.М., Казаков К.С., Красильников В.Я., Линге И.И., Трохов Н.Н., Уткин С.С. // Радиоактивные отходы. 2020. № 1 (10). С. 9.
  7. Вашман А.А., Демин А.В., Крылова Н.В., Кушников В.В., Матюнин Ю.И., Полуэктов П.П., Поляков А.С., Тетерин Э.Г. Фосфатные стекла с радиоактивными отходами / Под ред. А.А. Вашмана, А.С. Полякова. М.: ЦНИИатоминформ, 1997. 172 с.
  8. Кочкин Б.Т., Мальковский В. И., Юдинцев С.В. Научные основы оценки безопасности геологической изоляции долгоживущих радиоактивных отходов (Енисейский проект). М.: ИГЕМ РАН, 2017. 384 с.
  9. Мартынов К.В., Захарова Е.В., Кулюхин С.А. // Радиоактивные отходы. 2022. № 2 (19). С. 68.
  10. Мартынов К.В., Захарова Е.В. // Радиоактивные отходы. 2023. № 2 (23). С. 63.
  11. Garcia-Gutierrez M., Cormenzana J.L., Missana T., Mingarro M., Molinero J. // J. Iber. Geol. 2006. Vol. 32. N 1. P. 37.
  12. Martynov K.V., Konstantinova L.I., Konevnik Yu.V., Proshin I.M., Zakharova E.V. // Exp. Geosci. 2014. Vol. 20. N 1. P. 94.
  13. Muurinen A., Pemtilä-Hiltunen P., Uusheimo K. // MRS Online Proc. Library. 1988. Vol. 127. P. 743.
  14. Muurinen A., Ollila K., Lehikoinen J. // MRS Online Proc. Library. 1992. Vol. 294. P. 409.
  15. Kozaki T., Sato Y., Nakajima M., Kato H., Sato S., Ohashi H. // J. Nucl. Mater. 1999. Vol. 270. P. 265.
  16. Joseph C., Van Loon L.R., Jakob A., Steudtner R., Schmeide K., Sachs S., Bernhard G. // Geochim. Cosmochim. Acta. 2013. Vol. 109. P. 74.
  17. Tachi Y., Yotsuji K. // Geochim. Cosmochim. Acta. 2014. Vol. 132. P. 75.
  18. Wang Z., Wang H., Li O., Xu M., Guo Y., Li J., Wu T. // Appl. Geochem. 2016. Vol. 73. P. 1.
  19. Wu T., Wang Z., Wang H., Zhang Z., Van Loon L.R. // Appl. Clay Sci. 2017. Vol. 141. P. 104.
  20. Wang Z., Wu T., Ren P., Hua R., Wu H., Xu M., Tong Y. // J. Radioanal. Nucl. Chem. 2019. Vol. 322. P. 801.
  21. Kong J., Lee C.-P., Sun Y., Hua R., Liu W., Wang Z., Li Y., Wang Y. // J. Radioanal. Nucl. Chem. 2021. Vol. 328. P. 717.
  22. Fukatsu Y., Yotsuji K., Ohkubo T., Tachi Y. // Appl. Clay Sci. 2021. Vol. 211. Art. 106176.
  23. Wu T., Geng Z., Feng Z., Pan G., Shen Q. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 4. P. 2311.
  24. Zhu C.-M., Ye W.-M., Chen Y.-G., Chen B., Cui Y.-J. // Eng. Geol. 2013. Vol. 166. P. 74–80.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Types of yield curves for through diffusion, according to data from [4]: ​​1 – for a non-sorbable radionuclide, 2 – for a sorbable radionuclide, 3 – with precipitation from a pore solution for a non-sorbable radionuclide, 4 – with precipitation from a pore solution for a sorbable radionuclide.

Жүктеу (86KB)
3. Fig. 2. Through diffusion of Cs through a sample of mylonite TZ (ρт = 1.96 g/cm3, L = 3.5 mm) from the model solution MPVI-6: (a) – change in Cs concentration in the source chamber, (b) – total mass of Cs in the source and receiver, (c) – change in the average value of the difference in Cs concentrations in the source and receiver, (d) – specific total mass yield of Cs into the receiver; DeCs = 7.72 × 10–8 cm2/s, KdCs = 26 cm3/g.

Жүктеу (202KB)
4. Fig. 3. Stationary sections of the curves of the release of elements during diffusion from model solutions through compacted samples of clay materials: (a) – Cs/MPVI, (b) – Cs/MV, (c) – U/MPVI, (d) – U/MV, (d) – Se/MPVI, (e) – Se/MV.

Жүктеу (531KB)
5. Fig. 4. Stationary sections of the tritium yield curves (NTO) according to the data of work [4] and simulators of radioactive waste elements through compacted samples of clay materials during diffusion from model groundwater (MPVI): (a) – KB, (b) – TB, (c) – TZ, (d) – HB, (d) – KV.

Жүктеу (526KB)
6. Fig. 5. Stationary sections of the curves of the release of radioactive waste element simulators through compacted samples of clay materials during diffusion from model phosphate glass (PG) leaches: (a) – KB, (b) – TZ, (a) – HB.

Жүктеу (348KB)
7. Fig. 6. Experimental data on the dependence of the effective diffusion coefficients of selenium, cesium and uranium on the skeleton density of clay materials: this work and [4] – different clays (Table 3); [11] – FEBEX bentonite (Spain): 93% Ca-smectite; [13, 14, 21] – MX-80 bentonite (USA): 88.6% Na-smectite; [15] – Kunipia-F: enriched with 95% Na-montmorillonite from Kunigel-V1 bentonite (Japan); [16] – Opalinus Clay (Switzerland); [17] – Kunipia-P: enriched with 99.9% Na-montmorillonite from Kunigel-V1 bentonite (Japan); [18, 19, 20, 23] – GMZ bentonite (China): 75.4% Na-Ca-montmorillonite; [22] – Ca-montmorillonite (95%) obtained from Kunipia-F.

Жүктеу (153KB)
8. Fig. 7. Dependences of the effective pore diffusion coefficient of cesium, uranium and selenium from model solutions of MPVI and MV on the total diffusion factor for compacted clay materials: (a) – Cs/MPVI, (b) – Cs/MV, (c) – U/MPVI, (d) – U/MV, (d) – Se/MPVI, (e) – Se/MV.

Жүктеу (404KB)

© Russian Academy of Sciences, 2024