Stability of solutions to the logistic equation with delay, diffusion and nonclassical boundary conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.

全文:

受限制的访问

作者简介

I. Kashchenko

P. G. Demidov Yaroslavl State University

编辑信件的主要联系方式.
Email: iliyask@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

俄罗斯联邦, Yaroslavl

S. Kashchenko

P. G. Demidov Yaroslavl State University

Email: kasch@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

俄罗斯联邦, Yaroslavl

I. Maslenikov

P. G. Demidov Yaroslavl State University

Email: igor.maslenikov16@yandex.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

俄罗斯联邦, Yaroslavl

参考

  1. Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
  2. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
  3. Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
  4. Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
  5. Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
  6. Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
  7. Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
  8. Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
  9. Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
  10. Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Images of curves (11). The stability region of the zero solution (3), (7) is highlighted in gray. Parameter values: T = 1, r = 1, d = 10−1 and a) h = 10−1, b) h = 10−2, c) h = 10−3, d) h = 0.

下载 (56KB)
3. Fig. 2. The domain Ω for parameters T = 1, r = 1 and a) d = 0.1, b) d = 0.2, c) d = 0.5, d) d = 1.

下载 (50KB)
4. Fig. 3. Graphs of the solution amplitude of solution (3), (6) for d = 0.1, T = 1, r = 1, x0 = 0.5, a) α = −26.5, b) α = −26.9, c) α = −27.

下载 (52KB)
5. Fig. 4. Graphs of the dependence u(t,1) (left) and u(t*, x) (right) of the solution (3), (6) for d = 0.1, T = 1, r = 1, x0 = 0.55 α = −26.9.

下载 (37KB)
6. Fig. 5. Graphs of the solution amplitude of solution (3), (6) for d = 0.1, T = 1, r = 1 , x0 = 0.55, a) α = −38, b) α = −100.5, c) α = −101, d) α = −118.

下载 (75KB)
7. Fig. 6. Graphs of the dependence u(t,1) (left) and u(t*, x) (right) of the solution (3), (6) for d = 0.1, T = 1, r = 1 , x0 = 0.55, a) α = −100.5, b) α = −118.

下载 (77KB)

版权所有 © Russian Academy of Sciences, 2024