Sub-Lorentzian geometry on the Martinet distribution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Two problems of sub-Lorentzian geometry on the Martinet distribution are studied. For the first, the reachability set has a nontrivial intersection with the Martinet plane, but for the second it does not. Reachable sets, optimal trajectories, sub-Lorentzian distances and spheres are described.

About the authors

Yu. L. Sachkov

A.K. Ailamazyan Program Systems Institute of the Russian Academy of Sciences

Author for correspondence.
Email: yusachkov@gmail.com
Russian Federation

References

  1. Montgomery R. A tour of subriemannnian geometries, their geodesics and applications // Amer. Math. Soc. 2002.
  2. Agrachev A., Barilari D., Boscain U. A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian viewpoint // Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge Univ. Press, 2019.
  3. Grochowski M. Geodesics in the sub-Lorentzian geometry // Bull. Polish. Acad. Sci. Math. 2002. V. 50.
  4. Grochowski M. Normal forms of germs of contact sub-Lorentzian structures on . Differentiability of the sub-Lorentzian distance // J. Dynam. Control Systems. 2003. V. 9. № 4.
  5. Grochowski M. Properties of reachable sets in the sub-Lorentzian geometry // J. Geom. Phys. 2009. V. 57. № 9. P. 885–900.
  6. Grochowski M. Reachable sets for contact sub-Lorentzian metrics on . Application to control affine systems with the scalar input // J. Math. Sci. (N.Y.) 2011. V. 177. № 3. P. 383–394.
  7. Grochowski M. On the Heisenberg sub-Lorentzian metric on // Geometric Singularity Theory. Banach Center Publications, Institute of Mathematics. Warsawa: Polish Academy of Sciences, 2004. V. 65.
  8. Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on . An estimate for the distance function // Journal of Dynamical and Control Systems. 2006. V. 12. № 2. P. 145–160.
  9. Chang D.-C., Markina I. and Vasil'ev A. Sub-Lorentzian geometry on anti-de Sitter space // J. Math. Pures Appl. 2008. V. 90. P. 82–110.
  10. Korolko A. and Markina I. Nonholonomic Lorentzian geometry on some H-type groups // J. Geom. Anal. 2009. V. 19. P. 864–889.
  11. Grong E., Vasil’ev A. Sub-Riemannian and sub-Lorentzian geometry on SU(1, 1) and on its universal cover // J. Geom. Mech. 2011. V. 3. № 2. P. 225–260.
  12. Grochowski M., Medvedev A., Warhurst B. 3-dimensional left-invariant sub-Lorentzian contact structures // Differential Geometry and its Applications. 2016. V. 49. P. 142–166.
  13. Sachkov Yu. L., Sachkova E.F. Sub-Lorentzian distance and spheres on the Heisenberg group // Journal of Dynamical and Control Systems. 2023. V. 29. P. 1129–1159.
  14. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. Физматлит, 2005. Перевод: Agrachev A.A., Sachkov Yu.L. Control Theory from the Geometric Viewpoint. Springer, 2004.
  15. Сачков Ю.Л. Введение в геометрическую теорию управления. М.: URSS, 2021. Расширенный перевод: Sachkov Yu. Introduction to geometric control. Springer, 2022.
  16. Agrachev A., Bonnard B., Chyba M., Kupka I. Sub-Riemannian sphere in Martinet flat case // J. ESAIM: Control, Optimisation and Calculus of Variations. 1997. V. 2. P. 377–448.
  17. Сачков Ю.Л. Левоинвариантные задачи оптимального управления на группах Ли, интегрируемые в эллиптических функциях // УМН. 2023. Т. 78. № 1 (469). С. 67–166.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences