Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure
- Authors: Kovalevsky A.A.1,2
-
Affiliations:
- Krasovskii Institute of Mathematics and Mechanics UB RAS
- Ural Federal University
- Issue: Vol 515 (2024)
- Pages: 79-83
- Section: MATHEMATICS
- URL: https://rjsvd.com/2686-9543/article/view/647945
- DOI: https://doi.org/10.31857/S2686954324010124
- EDN: https://elibrary.ru/ZTEUHE
- ID: 647945
Cite item
Abstract
We consider variational inequalities with invertible operators in divergence form and constraint set where Ω is a nonempty bounded open set in , p > 1 and are measurable functions. Under the assumptions that the operators G-converge to an invertible operator , int {φ = ψ} ≠ ∅, and there exist functions such that a.e. in Ω and we establish the weak convergence in of the solutions us of the specified variational inequalities to the solution u of a similar variational inequality with the operator and the constraint set V. The fundamental difference between the considered case and the previously studied case, where meas {φ = ψ} = 0 is that, in general, the functionals do not converge to even weakly in W–1, p' (Ω) and the energy integrals do not converge to .
Full Text

About the authors
A. A. Kovalevsky
Krasovskii Institute of Mathematics and Mechanics UB RAS; Ural Federal University
Author for correspondence.
Email: alexkvl71@mail.ru
Russian Federation, Yekaterinburg; Yekaterinburg
References
- Spagnolo S. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche // Ann. Sc. Norm. Super. Pisa. Cl. Sci. (3). 1968. Vol. 22. No. 4. P. 571–597.
- Жиков В.В., Козлов С.М., Олейник О.А., Ха Тьен Нгоан. Усреднение и G-сходимость дифференциальных операторов // УМН. 1979. Т. 34. № 5 (209). С. 65–133.
- Панков А.А. Об усреднении и G-сходимости нелинейных эллиптических операторов дивергентного вида // Докл. АН СССР. 1984. Т. 278. № 1. С. 37–41.
- Pankov A. G-Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. V. 422. Dordrecht: Kluwer Academic Publishers, 1997.
- Ковалевский А.А. G-сходимость и усреднение нелинейных эллиптических операторов дивергентного вида с переменной областью определения // Изв. РАН. Сер. матем. 1994. Т. 58. № 3. С. 3–35.
- Murat F. Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe p.p. dans . Publ. Laboratoire d’Analyse Numérique, No. 76013. Univ. Paris VI, 1976.
- Kovalevsky A.A. Convergence of solutions of nonlinear elliptic variational inequalities with measurable bilateral constraints // Results Math. 2023. Vol. 78. No. 4. Paper No. 145. 22 p. https://doi.org/10.1007/s00025-023-01921-7
- Dal Maso G., Defranceschi A. Convergence of unilateral problems for monotone operators // J. Anal. Math. 1989. Vol. 53. No 1. P. 269–289. https://doi.org/10.1007/BF02793418
- Boccardo L., Murat F. Homogenization of nonlinear unilateral problems / In: G. Dal Maso, G.F. Dell’Antonio (eds). Composite Media and Homogenization Theory, Prog. Nonlinear Differ. Equ. Appl. Vol. 5. Boston: Birkhäuser, 1991. P. 81–105.
- Kovalevsky A.A. Nonlinear variational inequalities with variable regular bilateral constraints in variable domains // Nonlinear Differ. Equ. Appl. 2022. Vol. 29. No. 6. Paper No. 70. 24 p. https://doi.org/10.1007/s00030-022-00797-w
- Evans L.C. Partial Differential Equations. Graduate Studies in Mathematics. Vol. 19. Providence, Rhode Island: American Mathematical Society, 1998.
- Lions J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, Gauthier-Villars, 1969.
Supplementary files
