Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We consider variational inequalities with invertible operators As: W01,pΩW1,p'Ω, s in divergence form and constraint set V=vW01,pΩ: φvψ a.e. in Ω where Ω is a nonempty bounded open set in nn2, p > 1 and φ,ψ: Ω¯ are measurable functions. Under the assumptions that the operators As G-converge to an invertible operator A: W01,pΩW1,p'Ω, int {φ = ψ} ≠ ∅, measφ=ψΩ=0 and there exist functions φ¯, ψ¯W01,pΩ such that φφ¯ψ¯ψ a.e. in Ω and measφψ\φ¯ψ¯=0 we establish the weak convergence in W01,pΩ of the solutions us of the specified variational inequalities to the solution u of a similar variational inequality with the operator A and the constraint set V. The fundamental difference between the considered case and the previously studied case, where meas {φ = ψ} = 0 is that, in general, the functionals Asus do not converge to Au even weakly in W–1, p' (Ω) and the energy integrals <Asus, us> do not converge to <Au, u>.

Full Text

Restricted Access

About the authors

A. A. Kovalevsky

Krasovskii Institute of Mathematics and Mechanics UB RAS; Ural Federal University

Author for correspondence.
Email: alexkvl71@mail.ru
Russian Federation, Yekaterinburg; Yekaterinburg

References

  1. Spagnolo S. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche // Ann. Sc. Norm. Super. Pisa. Cl. Sci. (3). 1968. Vol. 22. No. 4. P. 571–597.
  2. Жиков В.В., Козлов С.М., Олейник О.А., Ха Тьен Нгоан. Усреднение и G-сходимость дифференциальных операторов // УМН. 1979. Т. 34. № 5 (209). С. 65–133.
  3. Панков А.А. Об усреднении и G-сходимости нелинейных эллиптических операторов дивергентного вида // Докл. АН СССР. 1984. Т. 278. № 1. С. 37–41.
  4. Pankov A. G-Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. V. 422. Dordrecht: Kluwer Academic Publishers, 1997.
  5. Ковалевский А.А. G-сходимость и усреднение нелинейных эллиптических операторов дивергентного вида с переменной областью определения // Изв. РАН. Сер. матем. 1994. Т. 58. № 3. С. 3–35.
  6. Murat F. Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe p.p. dans . Publ. Laboratoire d’Analyse Numérique, No. 76013. Univ. Paris VI, 1976.
  7. Kovalevsky A.A. Convergence of solutions of nonlinear elliptic variational inequalities with measurable bilateral constraints // Results Math. 2023. Vol. 78. No. 4. Paper No. 145. 22 p. https://doi.org/10.1007/s00025-023-01921-7
  8. Dal Maso G., Defranceschi A. Convergence of unilateral problems for monotone operators // J. Anal. Math. 1989. Vol. 53. No 1. P. 269–289. https://doi.org/10.1007/BF02793418
  9. Boccardo L., Murat F. Homogenization of nonlinear unilateral problems / In: G. Dal Maso, G.F. Dell’Antonio (eds). Composite Media and Homogenization Theory, Prog. Nonlinear Differ. Equ. Appl. Vol. 5. Boston: Birkhäuser, 1991. P. 81–105.
  10. Kovalevsky A.A. Nonlinear variational inequalities with variable regular bilateral constraints in variable domains // Nonlinear Differ. Equ. Appl. 2022. Vol. 29. No. 6. Paper No. 70. 24 p. https://doi.org/10.1007/s00030-022-00797-w
  11. Evans L.C. Partial Differential Equations. Graduate Studies in Mathematics. Vol. 19. Providence, Rhode Island: American Mathematical Society, 1998.
  12. Lions J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, Gauthier-Villars, 1969.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences