WEAKLY SSATURATED SUBGRAPHS OF RANDOM GRAPHS
- 作者: Kalinichenko O.1, Tayfeh-Rezaie B.2, Zhukovskii M.1
-
隶属关系:
- Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM)
- 期: 卷 509, 编号 1 (2023)
- 页面: 46-49
- 栏目: MATHEMATICS
- URL: https://rjsvd.com/2686-9543/article/view/647870
- DOI: https://doi.org/10.31857/S268695432370008X
- EDN: https://elibrary.ru/CTARUK
- ID: 647870
如何引用文章
详细
In this paper, we study weak saturation numbers of binomial random graphs. We proved stability of the weak saturation for several pattern graphs, and proved asymptotic stability for all pattern graphs.
作者简介
O. Kalinichenko
Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures
编辑信件的主要联系方式.
Email: s15b1_kalinichenko@179.ru
Russia, Moscow
B. Tayfeh-Rezaie
School of Mathematics, Institute for Research in Fundamental Sciences (IPM)
编辑信件的主要联系方式.
Email: tayfeh-r@ipm.ir
Iran, Tehran
M. Zhukovskii
Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures
编辑信件的主要联系方式.
Email: zhukmax@gmail.com
Russia, Moscow
参考
- Alon N. An extremal problem for sets with applications to graph theory // J. Combin. Theory Ser. A. 1985. V. 40. № 1. P. 82–89.
- Bidgoli M.R., Mohammadian A., Tayfeh-Rezaie B., Zhukovskii M. Threshold for weak saturation stability // arXiv:2006.06855. 2020.
- Bollobás B. Weakly k-saturated graphs // Beiträge zur Graphen–theorie. 1968. P. 25–31.
- Kalai G. Hyperconnectivity of graphs // Graphs Combin. 1985 V. 1. P. 65–79.
- Kalinichenko O., Zhukovskii M. Weak saturation stability // arXiv:2107.11138. 2022.
- Korándi D., Sudakov B. Saturation in random graphs // Random Structures Algorithms. 2017. V. 51. № 1. P. 169–181.
- Krivelevich M., Patkós B. Equitable coloring of random graphs // Random Structures Algorithms. 2009. V. 35. № 1. P. 83–99.
- Kronenberg, G., Martins T., Morrison N. Weak saturation numbers of complete bipartite graphs in the clique // J. Combin. Theory Ser. A. 2021. V. 178. 105357.
- Lovász, L. Flats in matroids and geometric graphs // Combinatorial Surveys. 1977. P. 45–86.
- Spencer J. Threshold Functions for Extension Statements // J. Combin. Theory Ser. A. 1990. V. 53. P. 286–305.
补充文件
