Chaotic, Hyperchaotic Vibrations and Stability of Porous Euler–Bernoulli Beams Considering Physical and Geometrical Nonlinearities
- 作者: Krysko V.A.1,2, Papkova I.V.1, Yakovleva T.V.1,2, Krysko A.V.1,2
-
隶属关系:
- Yuri Gagarin State Technical University of Saratov
- Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences
- 期: 卷 521, 编号 1 (2025)
- 页面: 50-58
- 栏目: МЕХАНИКА
- URL: https://rjsvd.com/2686-7400/article/view/684387
- DOI: https://doi.org/10.31857/S2686740025020059
- EDN: https://elibrary.ru/GOMGAQ
- ID: 684387
如何引用文章
详细
A mathematical model of flexible (according to the theories of T. von Karman and Green–Lagrange) physically nonlinear porous size-dependent Euler-Bernoulli beams subjected to transversal alternating loading is developed. The required differential equations are derived from the Hamilton–Ostrogradsky principle. Iterative algorithm is developed to compute chaotic and hyperchaotic vibrations in a mechanical system with “almost” infinite degrees of freedom. These algorithm include the Finite Difference Method (FDM) combined with Birger's Method of Variable Elasticity Parameters (MVEP), which takes into account physical nonlinearity. Chaos is analysed according to Gulick's definition. The instability of beam structures, including both metallic continuous and porous functionally graded Euler–Bernoulli beams, is studied within the framework of the Lavrentiev–Ishlinsky and Rayleigh–Taylor concepts.
作者简介
V. Krysko
Yuri Gagarin State Technical University of Saratov; Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: tak@san.ru
俄罗斯联邦, Saratov; Saratov
I. Papkova
Yuri Gagarin State Technical University of Saratov
Email: tak@san.ru
俄罗斯联邦, Saratov
T. Yakovleva
Yuri Gagarin State Technical University of Saratov; Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences
Email: tak@san.ru
俄罗斯联邦, Saratov; Saratov
A. Krysko
Yuri Gagarin State Technical University of Saratov; Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences
Email: kryskoav@sstu.ru
俄罗斯联邦, Saratov; Saratov
参考
- Krysko A.V., Papkova I.V., Rezchikov A.F., Krysko V. A. A New Mathematical Model of Functionally Graded Porous Euler–Bernoulli Nanoscaled Beams Taking into Account Some Types of Nonlinearities // Materials. 2022. V. 15 (20). 7186.
- Krysko V.A., Papkova I.V., Krysko A.V. Nonlinear dynamics of contact interaction porous size-dependent Euler – Bernoulli beams resonators with clearance: Numerical analysis of the stability problem // Communications in Nonlinear Science and Numerical Simulation, 2024. 135. 108038.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М., Евдокимов В.С. О механической концепции самосборки наноматериалов // Известия РАН. Механика твердого тела. 2023. № 5. С. 111–119.
- Eugenio Ruocco, Vincenzo Minutolo. Buckling Analysis of Mindlin Plates Under the Green–Lagrange Strain Hypothesis // International Journal of Structural Stability and Dynamics. 2015. V. 15. No. 06. 1450079. https://doi.org/10.1142/S0219455414500795
- Вudiansky B., Roth R.S. Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells. // TN D – 1510. NASA. 1962. Р. 597–606.
- Вольмир А.С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972. 432 с.
- Shian A.C., Soong T.T., Roth R.S. Dynamic Buckling of Conical Shells with Imperfections // А1АА Journal. 1974. V. 12. № 6. Р. 24–30.
- Amabili M. Nonlinear Vibrations and Stability of Shells and Plates. N.Y.: Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511619694
- Koning C., Taub J. Impact buckling of thin bars in the elastic range hinged at both ends // Luftfahrtfosrchung. 1933. V. 10. Р. 55–64.
- Лаврентьев М.А., Ишлинский А.Ю. Динамическая форма потери устойчивости упругих систем // ДАН СССР. 1949. Т. 44. № 6. С. 779–782.
- Dowell E.H., Ilgamov M. Studies in Nonlinear Aeroelasticity. SV. N.Y.; L.; Tokyo: Springer – Verlag, 1988. 455 p.
- Морозов Н.Ф., Товстик П.Е., Товстик Т.П. Еще раз о задаче Ишлинского–Лаврентьева // ДАН. 2014. Т. 455. № 4. С. 412–415.
- Gulick D. Encounters with Chaos. N.Y.: McGraw – Hill, 1992. P. 224.
- Fan F., Xu Y., Sahmani S., Safaei B. Modified couple stress – based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS based isogeometric approach // Comput. Methods Appl. Mech. Eng. 2020. V. 372. 113400.
- Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P. Experiments and theory in strain gradient elasticity // J. Mech. Phys. Sol. 2003. V. 51(8). P. 1477–1508.
- Биргер И.А. Некоторые общие методы решения задач теории пластичности // Прикладная математика и механика. 1951. Т. 15. Вып. 6. С. 765–770.
- Ворович И.И., Красовский Ю.П. О методе упругих решений // ДАН СССР. 1959. Т. 126. № 4. С. 740–743.
- Yakovleva T.V., Awrejcewicz J., Krysko A.V., Krechin A.N., Krysko V.A. Quantifying chaotic dynamics of nanobeams with clearance // International Journal of Non-Linear Mechanics. 2022. V. 144. 104094. https://doi.org/10.1016/j.ijnonlinmec.2022.104094
- Lozi R. Can we trust in numerical computations of chaotic solutions of dynamical systems? // World Scientific Series on Nonlinear Science, World Scientific, Topology and Dynamics of Chaos in Celebration of Robert Gilmore’s 70th Birthday. 2013. V. 84. P. 63–98.
- Sato S., Sano M., Sawada Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems // Progress of Theoretical Physics. V. 77. № 1. P. 1–5.
- Yakovleva T.V., Dobriyan V.V., Yaroshenko Т.Yu., Krysko-jr. V.A. Mathematical Modeling and Diagnostics Using Neural Networks and a Genetic Algorithm for Epilepsy Patients / In: Badriev I. B., Banderov V., Lapin S. A. (eds.) Mesh Methods for Boundary – Value Problems and Applications. Lecture Notes in Computational Science and Engineering. Springer, Cham. 2022. V. 141. P. 563–573. https://doi.org/10.1007/978-3-030-87809-2_42
- Yakovleva T.V., Awrejcewicz J., Kruzhilin V.S., Krysko V.A. On the chaotic and hyper-chaotic dynamics of nanobeams with low shear stiffness // Chaos. 2021; 31: 023107. https://doi.org/10.1063/5.0032069
- Awrejcewicz Jan, Krysko V.A. Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members. Applications of the Bubnov–Galerkin and Finite Difference Methods. 2nd ed. Springer, 2020. 602 p.
- Ohashi Y., Murakami S. The elasto-plastic bending of a clamped thin circular plat. // Applied Mechanics. 1966. V. 1. P. 212–223.
- Charó G.D., Sciamarella D., Mangiarotti, S., Artana G. & Letellier C. Equivalence between the unsteady double-gyre system and a 4D autonomous conservative chaotic system // Chaos. 2019. V. 29. 123126. https://doi.org/:10.1063/1.5120625
补充文件
