Long-range atmospheric transport of dust from the Caspian Sea region to the Russian Arctic in December 2023
- 作者: Gubanova D.P.1, Vinogradova А.А.1,2, Kotova E.I.2
-
隶属关系:
- A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- 期: 卷 519, 编号 2 (2024)
- 页面: 133-140
- 栏目: ATMOSPHERIC AND HYDROSPHERIC PHYSICS
- ##submission.dateSubmitted##: 04.06.2025
- ##submission.datePublished##: 28.12.2024
- URL: https://rjsvd.com/2686-7397/article/view/682459
- DOI: https://doi.org/10.31857/S2686739724120171
- ID: 682459
如何引用文章
详细
A rare phenomenon – the long-range atmospheric transport of dust from the arid and semiarid territories of the Caspian Sea region through the center of European part of Russia to its Arctic areas – was registered in December 2023 during field study of aerosol composition aerosol in Moscow air and the snow composition in the Arkhangelsk region. The trajectories of air mass transport, dynamics of spatial and temporal variability of mass PM2.5 and PM10 concentration values in the Moscow region, as well as numerical estimates and spatial distributions of near-surface aerosol concentration and atmospheric optical characteristics over the European part of Russia (according to the MERRA-2 reanalysis) confirm an increase in aerosol air pollution due to long-rang air transport from the territories of the Caspian Sea to the Arkhangelsk region. In the snow sample taken in the area of Pinega (Pinezhsky Nature Reserve), Arkhangelsk region in the spring of 2024, in the thickness of the snow cover at an altitude of 18–20 cm (with a total snow thickness of 65 cm), a layer of snow that fell in December 2023 having a yellowish color was found. Preliminary studies of the sample of this snow showed the presence of a large amount of organic suspension and plant residues, which in winter indicates atmospheric aerosol transport from the southern regions of Russia.
全文:

作者简介
D. Gubanova
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: gubanova@ifaran.ru
俄罗斯联邦, Moscow
А. Vinogradova
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: gubanova@ifaran.ru
俄罗斯联邦, Moscow; Moscow
E. Kotova
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: gubanova@ifaran.ru
俄罗斯联邦, Moscow
参考
- Kok J. F., Storelvmo T., Karydis V. A. et al. Mineral dust aerosol impacts on global climate and climate change // Nat. Rev. Earth Environ. 2023. V. 4. P. 71–86. https://doi.org/10.1038/s43017-022-00379-5
- Klingmüller K., Lelieveld J., Karydis V.A., Stenchikov G.L. Direct radiative effect of dust–pollution interactions // Atmos. Chem. Phys. 2019. V. 19. P. 7397–7408. https://doi.org/10.5194/acp-19-7397-2019
- Schepanski K. Transport of mineral dust and its impact on climate // Geosciences. 2018. V. 8. 151. https://doi.org/10.3390/geosciences8050151
- Mahowald N. M., Kloster S., Engelstaedter S. et al. Observed 20th century desert dust variability: impact on climate and biogeochemistry // Atmos. Chem. Phys. 2010. V. 10. P. 10875–10893. https://doi.org/10.5194/acp-10-10875-2010
- Zhang X., Zhao L., Tong D. Q. et al. Systematic review of global desert dust and associated human health effects // Atmosphere. 2016. V. 7. 158. https://doi.org/10.3390/atmos7120158
- Gliss J., Mortier A., Schulz M. et al. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations // Atmos. Chem. Phys. 2021. V. 21. P. 87–128. https://doi.org/10.5194/acp-21-87-2021
- Ginoux P., Prospero J. M., Gil T. E. et al. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products // Rev. Geophys. 2012. V. 50. RG3005. https://doi.org/10.1029/2012RG000388
- Gubanova D., Chkhetiani O., Vinogradova A. et al. Atmospheric transport of dust aerosol from arid zones to the Moscow region during fall 2020 // AIMS Geosciences. 2022. V. 8. № 2. P. 277–302. https://doi.org/10.3934/geosci.2022017
- van der Doe M., Knippertz P., Zschenderlein P. et al. The mysterious long-range transport of giant mineral dust particles // Science Advances. 2018. V. 4. Iss. 12. https://doi.org/10.1126/sciadv.aau2768
- Сельскохозяйственный словарь-справочник / Гл. ред. А. И. Гайстер. М.–Л.: Государственное издательство колхозной и совхозной литературы “Сельхозгиз”, 1934. 1280 с.
- Banks J. R., Heinold B., Schepanski K. Radiative cooling and atmospheric perturbation effects of dust aerosol from the Aralkum Desert in Central Asia // EGUsphere [preprint]. 2023. https://doi.org/10.5194/egusphere-2023-2772
- Shukurov K. A., Simonenkov D. V., Nevzorov A. V. et al. CALIOP-based evaluation of dust emissions and long-range transport of the dust from the Aral–Caspian arid region by 3D-source potential impact (3D-SPI) method // Remote Sens. 2023. V. 15. 2819. https://doi.org/10.3390/rs15112819
- Виноградова А. А., Губанова Д. П., Лезина Е. А., Иванова Ю. А. Пылевой аэрозоль из районов Северного Прикаспия в приземном воздухе центра европейской России // Оптика атмосферы и океана. 2024. Т. 37. № 6. С. 453–460. https://doi.org/10/10.15372/AOO20240602.
- Губанова Д. П., Виноградова А. А., Лезина Е. А. и др. Условно-фоновый уровень аэрозольного загрязнения приземного воздуха в Москве и пригороде: сезонные вариации // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 6. С. 754–773. https://doi.org/10.31857/S0002351523060056
- Seinfeld J. H., Pandis S. N. Atmospheric chemistry and physics: from air pollution to climate change, 2nd Еdition. New York: Wiley, USA, 2006. 1232 p.
- Stein A. F., Draxler R. R, Rolph G. D. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Amer. Meteor. Soc. 2015. V. 96. P. 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
- Gelaro R., McCarty W., Suárez M. J. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) // J Clim. 2017. V. 30. Iss. 13. P. 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
- Одинцов С. Л., Гладких В. А., Камардин А. П., Невзорова И. В. Высота слоя перемешивания в условиях температурных инверсий: экспериментальные данные и модельные оценки // Оптика атмосферы и океана. 2022. Т. 35. № 7. С. 549–558. https://doi.org/10.15372/AOO20220705
- Шукуров К. А., Шукурова Л. М. Регионы-источники нитрата аммония, сульфата аммония и природных силикатов в приземном аэрозоле Западного Подмосковья // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 3. С. 360–369. https://doi.org/10.7868/s0002351517030142
- Шевченко В. П., Коробов В. Б., Лисицын А. П. и др. Первые данные о составе пыли, окрасившей снег на европейском севере России в желтый цвет (март 2008 г.) // ДАН. 2010. Т. 431. № 5. С. 675–679.
补充文件
