A point of limited availability of water in soil and its determination

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The point of limited availability of water (PLAW) characterizes the lower boundary of the area of the most productive moisture for plants. The analysis of experimental methods for determining PLAW indicates their labor intensity and low productivity. The aim of the study was to develop a high-performance and accurate method for determining PLAW. 18 samples from various soils were used in the work. To determine the PLAW, a method was proposed in which soil samples were placed in a Schott funnel, moistened with excess water, and then the water was pumped out using a water jet pump. As the water was removed from the sample, the interval between drops falling from the funnel increased. A jump in the intervals between drops was considered an indicator of the end of the experiment. Experiments have shown that the soil moisture content obtained by vacuuming correlates with the values calculated for the lowest soil moisture capacity (according to Dolgov) by 87%. The values of the PLAW obtained by the secant method (according to Voronin) for some of the soil samples do not fall out of the obtained dependence. Using the method, it was shown that soil drying leads to a decrease in the value of the measured PLAW. An explanation of the results from the position of the presence of organomineral gels in soils is proposed.

Full Text

Restricted Access

About the authors

G. N. Fedotov

Lomonosov Moscow State University

Author for correspondence.
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow

S. A. Shoba

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com

Corresponding Member of the RAS

Russian Federation, Moscow

I. V. Gorepekin

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow

A. I. Sukharev

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow

D. A. Tarasenko

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow

A. P. Shvarov

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow

Z. Tyugai

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow

References

  1. Еремин Д. И., Шахова О. А. Динамика влажности чернозема, выщелоченного при различных системах обработки под яровую пшеницу в условиях Северного Зауралья // Аграрный вестник Урала. 2010. № 1 (67). С. 38–40.
  2. Шеин Е. В. Курс физики почв. М.: Изд-во Моск. Ун-та, 2005. 430 с.
  3. Novák V., Hlaváčiková H. Applied soil hydrology. Cham, Switzerland: Springer, 2019. 342 p.
  4. Вадюнина А. Ф., Корчагина З. А. Методы исследования физических свойств почв и грунтов. 2-е изд. М., 1973, 1969. 399 с.
  5. Воронин А. Д. Структурно-функциональная гидрофизика почв. М.: Изд-во Моск. Ун-та, 1984. 204 с.
  6. Честнова В. В. Реологические свойства черноземов типичных курской области: взаимосвязь с физическими свойствами и основной гидрофизической характеристикой / Дис. … канд. биол наук: 06.01.03. М., 2017. 116 с.
  7. Методическое руководство по изучению почвенной структуры / Под ред. И. Б. Ревута, А. А. Роде. Л.: Колос, 1969. 528 с.
  8. Шеин Е. В., Архангельская Т. А., Гончаров В. М., Губер А. К., Початкова Т. Н., Сидорова М. А., Смагин А. В., Умарова А. Б. Полевые и лабораторные методы исследования физических свойств и режимов почв: методическое руководство. М.: Изд-во Моск. Ун-та, 2001. 200 с.
  9. Федотов Г. Н., Шеин Е. В., Ушкова Д. А., Салимгареева О. А., Горепекин И. В., Потапов Д. И. Надмолекулярные образования из молекул гуминовых веществ и их фрактальная организация // Почвоведение. 2023. № 8. С. 903–910.
  10. Тюлин А. Ф. Органно-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: Изд-во АН СССР, 1958. 52 с.
  11. Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J., Conte P. Humic substances: from supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Appl. Sci. 2023. V. 13. № 4. P. 2236.
  12. Оsterberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // Eur. Biophys. J. 1992. V. 21. № 3. P. 163–167.
  13. Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A // Physicochemical and Engineering Aspects. 1997. V. 127. Iss. 1–3. P. 57–68.
  14. Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time // Soil Science Society of Am. J. 1996. V. 60. № 6. P. 1613–1678.
  15. Милановский Е. Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
  16. Старцев В. В., Дымов А. А. Амфифильные свойства и водорастворимые компоненты органического вещества почв приполярного Урала // Почвоведение. 2021. № 12. С. 1492–1505.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the time interval between drops falling from a Schott funnel on the ordinal number of the drop

Download (47KB)
3. Fig. 2. Change in soil moisture content (SMC) from the time interval between drops falling from a Schott funnel when wet (2) and dry (1) air passes through a sod-podzolic soil sample

Download (64KB)
4. Fig. 3. The relationship between the experimental values ​​of capillary rupture humidity by the vacuum method and the calculated values. The points obtained by the intercept method are highlighted in red.

Download (62KB)
5. Fig. 4. Effect of moisture content of gray forest soil samples on the determined values ​​of capillary rupture moisture (CRM)

Download (73KB)

Copyright (c) 2025 Russian Academy of Sciences