A point of limited availability of water in soil and its determination
- Authors: Fedotov G.N.1, Shoba S.A.1, Gorepekin I.V.1, Sukharev A.I.1, Tarasenko D.A.1, Shvarov A.P.1, Tyugai Z.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 520, No 1 (2025)
- Pages: 175-180
- Section: SOIL SCIENCE
- Submitted: 03.06.2025
- Published: 30.05.2025
- URL: https://rjsvd.com/2686-7397/article/view/682420
- DOI: https://doi.org/10.31857/S2686739725010209
- EDN: https://elibrary.ru/GUOSJD
- ID: 682420
Cite item
Abstract
The point of limited availability of water (PLAW) characterizes the lower boundary of the area of the most productive moisture for plants. The analysis of experimental methods for determining PLAW indicates their labor intensity and low productivity. The aim of the study was to develop a high-performance and accurate method for determining PLAW. 18 samples from various soils were used in the work. To determine the PLAW, a method was proposed in which soil samples were placed in a Schott funnel, moistened with excess water, and then the water was pumped out using a water jet pump. As the water was removed from the sample, the interval between drops falling from the funnel increased. A jump in the intervals between drops was considered an indicator of the end of the experiment. Experiments have shown that the soil moisture content obtained by vacuuming correlates with the values calculated for the lowest soil moisture capacity (according to Dolgov) by 87%. The values of the PLAW obtained by the secant method (according to Voronin) for some of the soil samples do not fall out of the obtained dependence. Using the method, it was shown that soil drying leads to a decrease in the value of the measured PLAW. An explanation of the results from the position of the presence of organomineral gels in soils is proposed.
Full Text

About the authors
G. N. Fedotov
Lomonosov Moscow State University
Author for correspondence.
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow
S. A. Shoba
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
Corresponding Member of the RAS
Russian Federation, MoscowI. V. Gorepekin
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow
A. I. Sukharev
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow
D. A. Tarasenko
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow
A. P. Shvarov
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow
Z. Tyugai
Lomonosov Moscow State University
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow
References
- Еремин Д. И., Шахова О. А. Динамика влажности чернозема, выщелоченного при различных системах обработки под яровую пшеницу в условиях Северного Зауралья // Аграрный вестник Урала. 2010. № 1 (67). С. 38–40.
- Шеин Е. В. Курс физики почв. М.: Изд-во Моск. Ун-та, 2005. 430 с.
- Novák V., Hlaváčiková H. Applied soil hydrology. Cham, Switzerland: Springer, 2019. 342 p.
- Вадюнина А. Ф., Корчагина З. А. Методы исследования физических свойств почв и грунтов. 2-е изд. М., 1973, 1969. 399 с.
- Воронин А. Д. Структурно-функциональная гидрофизика почв. М.: Изд-во Моск. Ун-та, 1984. 204 с.
- Честнова В. В. Реологические свойства черноземов типичных курской области: взаимосвязь с физическими свойствами и основной гидрофизической характеристикой / Дис. … канд. биол наук: 06.01.03. М., 2017. 116 с.
- Методическое руководство по изучению почвенной структуры / Под ред. И. Б. Ревута, А. А. Роде. Л.: Колос, 1969. 528 с.
- Шеин Е. В., Архангельская Т. А., Гончаров В. М., Губер А. К., Початкова Т. Н., Сидорова М. А., Смагин А. В., Умарова А. Б. Полевые и лабораторные методы исследования физических свойств и режимов почв: методическое руководство. М.: Изд-во Моск. Ун-та, 2001. 200 с.
- Федотов Г. Н., Шеин Е. В., Ушкова Д. А., Салимгареева О. А., Горепекин И. В., Потапов Д. И. Надмолекулярные образования из молекул гуминовых веществ и их фрактальная организация // Почвоведение. 2023. № 8. С. 903–910.
- Тюлин А. Ф. Органно-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: Изд-во АН СССР, 1958. 52 с.
- Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J., Conte P. Humic substances: from supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Appl. Sci. 2023. V. 13. № 4. P. 2236.
- Оsterberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // Eur. Biophys. J. 1992. V. 21. № 3. P. 163–167.
- Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A // Physicochemical and Engineering Aspects. 1997. V. 127. Iss. 1–3. P. 57–68.
- Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time // Soil Science Society of Am. J. 1996. V. 60. № 6. P. 1613–1678.
- Милановский Е. Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
- Старцев В. В., Дымов А. А. Амфифильные свойства и водорастворимые компоненты органического вещества почв приполярного Урала // Почвоведение. 2021. № 12. С. 1492–1505.
Supplementary files
