Modular nanotransporters capable of cause intracellular degradation of the N-protein of the SARS-CoV-2 virus in A549 cells with temporary expression of this protein fused with the fluorescent protein mRuby3

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Modular nanotransporters (MNTs) have been created containing an antibody-like molecule, monobody, to the N-protein of the SARS-CoV-2 virus, as well as an amino acid sequence that attracts the E3 ligase Keap1 (E3BP). This MNT also included a site for cleavage of the E3BP monobody from the MNT in acidic endocytic compartments. It was shown that this cleavage by the endosomal protease cathepsin B leads to a 2.7-fold increase in the affinity of the E3BP monobody for the N-protein. Using A549 cells with transient expression of the N-protein fused with the fluorescent protein mRuby3, it was shown that incubation with MNT leads to a significant decrease in mRuby3 fluorescence. It is assumed that the developed MNTs can serve as the basis for the creation of new antiviral drugs against the SARS-CoV-2 virus.

全文:

受限制的访问

作者简介

Y. Khramtsov

Institute of Gene Biology, RAS

编辑信件的主要联系方式.
Email: alsobolev@yandex.ru
俄罗斯联邦, Moscow

A. Ulasov

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru
俄罗斯联邦, Moscow

T. Lupanova

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru
俄罗斯联邦, Moscow

G. Georgiev

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru

Academician

俄罗斯联邦, Moscow

A. Sobolev

Institute of Gene Biology, RAS; Lomonosov Moscow State University

Email: alsobolev@yandex.ru

Corresponding 

俄罗斯联邦, Moscow; Moscow

参考

  1. Clercq E.D., Li G. // Clin Microbiol Rev. 2016. V. 29. P. 695–747.
  2. Gebauer M., Skerra A. // Annu Rev Pharmacol Toxicol. 2020. V. 60. P. 391-415.
  3. Shipunova V.O., Deyev S.M. // Acta Naturae. 2022. V. 14. № 1(52). P. 54–72.
  4. Tolmachev V.M., Chernov V.I., Deyev S.M. // Russ Chem Rev. 2022. V. 91. № 3. RCR5034
  5. Surjit M., Lal S.K. // Infect Genet Evol. 2008. V. 8. P. 397–405.
  6. Wu C., Zheng M. // Preprints. 2020. 2020020247.
  7. Prajapat M., Sarma P., Shekhar N., et al. // Indian J Pharmacol. 2020. V. 52. P. 56.
  8. Du Y., Zhang T., Meng X., et al. // Preprints. 2020. doi: 10.21203/rs.3.rs-25828/v1.
  9. Khramtsov Y.V., Ulasov A.V., Lupanova T.N., et al. // Dokl Biochem Biophys. 2023. V. 510. P. 87–90.
  10. Lu M., Liu T., Jiao Q. et al. // Eur J Med Chem. 2018. V. 146. P. 251–259.
  11. Fulcher L.J., Hutchinson L.D., Macartney T.J., et al. // Open biology. 2017. V. 7. 170066.
  12. Slastnikova T.A., Rosenkranz A.A., Khramtsov Y.V., et al. // Drug Des Devel Ther. 2017. V. 11. P. 1315–1334.
  13. Khramtsov Y.V., Ulasov A.V., Lupanova T.N., et al. // Dokl Biochem Biophys. 2022. V. 506.
  14. Kern H.B., Srinivasan S., Convertine A.J., et al. // Mol Pharmaceutics. 2017. V. 14(5). P. 1450–1459.
  15. Wang S., Dai T., Qin Z., et al. // Nat. Cell Biol. 2021. V. 23. P. 718–732.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the relative fluorescence intensity (the fluorescence intensity before the start of thermophoresis is taken as 100%) 20 s after the start of thermophoresis on the concentration of MNT1 or cleaved MNT1 at a constant concentration of N-protein labeled with AF488 (5 nM). The standard error of relative fluorescence intensity determination is indicated (14–17 replicates).

下载 (61KB)
3. Fig. 2. Relative fluorescence of A549 cells (the fluorescence of cells to which MNT was not added was taken as 100%) when they were incubated for various times with 500 nM MNT1 or 500 nM MNT0. Mean values with corresponding standard error are shown (n = 3–9).

下载 (47KB)

版权所有 © Russian Academy of Sciences, 2024