Does Maternal HIV Infection Affect Neonatal Outcomes?

  • Authors: Zarkesh M.1, Kermani F.2, Ghalibaf M.3, Orooji A.4, Moradi R.5
  • Affiliations:
    1. Maternal, Fetal and Neonatal Research Center, Tehran University of Medical Sciences
    2. Health Information Technology Department, School of Allied Medical Sciences, Semnan University of Medical Sciences
    3. Department of Statistics, Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University
    4. Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science (NKUMS)
    5. Reproductive Health, Maternal, Fetal and Neonatal Research Center, Institute of Family Health, Tehran University of Medical Sciences
  • Issue: Vol 22, No 4 (2024)
  • Pages: 219-229
  • Section: Medicine
  • URL: https://rjsvd.com/1570-162X/article/view/644101
  • DOI: https://doi.org/10.2174/011570162X292489240812065510
  • ID: 644101

Cite item

Full Text

Abstract

Background:Pregnancy among women infected with HIV is classified as a high-risk pregnancy. While previous research has indicated an elevated likelihood of preterm birth, low birth weight, and early gestational age in infants born to mothers with HIV, the correlation between maternal HIV infection and different neonatal results remains unclear.

Objective:This study aims to investigate the impact of maternal HIV infection on after-birth neonatal outcomes using machine learning (ML) and statistical methods.

Methods:A case-control study is conducted through a three-stage process: Initially, the outcomes among newborns from HIV-positive mothers are identified through a combination of literature review and expert survey. Subsequently, data are paired at a 1:2 ratio based on gestational age with infants from HIV-positive mothers (n=48) compared to HIV-negative mothers (n=96) as the control group. Finally, various feature selection techniques are applied to identify outcomes that exhibit significant differences between the two groups.

Results:The statistical analysis showed that the rate of addiction among HIV-positive mothers is higher than that of the HIV-negative group. The need for mechanical ventilation and duration of ventilator-assisted breathing in infants born to HIV-positive mothers are significantly higher than in infants born to HIV-negative mothers. Moreover, based on feature selection methods, increasing the need for mechanical ventilation and reducing surfactant administration were two important outcomes.

Conclusions:To investigate the impact of maternal HIV infection on neonatal outcomes, various statistical and machine learning-based feature selection techniques were implemented, and the results showed that the presented methods can be utilized to examine the potential impacts of different diseases contracted by the mother on the infant.

About the authors

Mohammadreza Zarkesh

Maternal, Fetal and Neonatal Research Center, Tehran University of Medical Sciences

Email: info@benthamscience.net

Farzaneh Kermani

Health Information Technology Department, School of Allied Medical Sciences, Semnan University of Medical Sciences

Email: info@benthamscience.net

Mohammad Ghalibaf

Department of Statistics, Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University

Email: info@benthamscience.net

Azam Orooji

Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science (NKUMS)

Author for correspondence.
Email: info@benthamscience.net

Raheleh Moradi

Reproductive Health, Maternal, Fetal and Neonatal Research Center, Institute of Family Health, Tehran University of Medical Sciences

Email: info@benthamscience.net

References

  1. WHO, HIV Global. 2023. Available from:https://www.who.int/data/gho/data/themes/hiv-aids(accessed on 31-7-2024)
  2. In danger: UNAIDS global AIDS Update 2022. Geneva: Joint United Nations Programme on HIV/AIDS; 2022. Licence: CC BY-NC-SA 3.0 IGO. Available from: https://www.unaids.org/sites/default/files/media_asset/2022-global-aids-update-summary_en.pdf(accessed on 31-7-2024)
  3. Cowdell I, Beck K, Portwood C, et al. Adverse perinatal outcomes associated with protease inhibitor-based antiretroviral therapy in pregnant women living with HIV: A systematic review and meta-analysis. EClin Med 2022; 46: 101368. doi: 10.1016/j.eclinm.2022.101368 PMID: 35521067
  4. Smith NH, Hwang LY. Risk factors for HIV in pregnant women. Int J STD AIDS 1996; 7(6): 388-95. doi: 10.1258/0956462961918338 PMID: 8940666
  5. Yang M, Wang Y, Chen Y, Zhou Y, Jiang Q. Impact of maternal HIV infection on pregnancy outcomes in southwestern China – a hospital registry based study. Epidemiol Infect 2019; 147: e124. doi: 10.1017/S0950268818003345 PMID: 30868995
  6. Graham W, Hussein J. Measuring and estimating maternal mortality in the era of HIV/AIDS. Paper presented at Workshop of HIV/AIDS and Adult Mortality in Developing Countries, New York, United States. 2003.
  7. Rich KC, Siegel JN, Jennings C, Rydman RJ, Landay AL. CD4+ lymphocytes in perinatal human immunodeficiency virus (HIV) infection: evidence for pregnancy-induced immune depression in uninfected and HIV-infected women. J Infect Dis 1995; 172(5): 1221-7. doi: 10.1093/infdis/172.5.1221 PMID: 7594657
  8. Anyanwu M. Feto-maternal outcome of HIV positive pregnant women on HAART at the gambia-case-control study. Acta Scient Women's Heal 2020; 2: 2-7. doi: 10.31080/ASWH.2020.02.0127
  9. Lewis G. Beyond the Numbers: reviewing maternal deaths and complications to make pregnancy safer. Br Med Bull 2003; 67(1): 27-37. doi: 10.1093/bmb/ldg009 PMID: 14711752
  10. French CE, Cortina-Borja M, Thorne C, Tookey PA. Incidence, patterns, and predictors of repeat pregnancies among HIV-infected women in the United Kingdom and Ireland 1990-2009. J Acquir Immune Defic Synd 2012; 59(3): 287.
  11. Weis N, Katzenstein TL, Ørbæk M, et al. The Danish HIV Birth Cohort (DHBC) - a nationwide, prospective cohort. BMJ Open 2021; 11(7): e044565. doi: 10.1136/bmjopen-2020-044565 PMID: 34244252
  12. Goldstein PJ, Smit R, Stevens M, Sever JL. Association between HIV in pregnancy and antiretroviral therapy, including protease inhibitors and low birth weight infants. Infect Dis Obstet Gynecol 2000; 8(2): 94-8. doi: 10.1002/(SICI)1098-0997(2000)8:23.0.CO;2-V PMID: 10805364
  13. Snijdewind IJM, Smit C, Godfried MH, et al. Preconception use of cART by HIV-positive pregnant women increases the risk of infants being born small for gestational age. PLoS One 2018; 13(1): e0191389. doi: 10.1371/journal.pone.0191389 PMID: 29351561
  14. Uthman OA, Nachega JB, Anderson J, et al. Timing of initiation of antiretroviral therapy and adverse pregnancy outcomes: a systematic review and meta-analysis. Lancet HIV 2017; 4(1): e21-30. doi: 10.1016/S2352-3018(16)30195-3 PMID: 27864000
  15. Xiao PL, Zhou YB, Chen Y, et al. Association between maternal HIV infection and low birth weight and prematurity: a meta-analysis of cohort studies. BMC Pregnancy Childbirth 2015; 15(1): 246. doi: 10.1186/s12884-015-0684-z PMID: 26450602
  16. Chen JY, Ribaudo HJ, Souda S, et al. Highly active antiretroviral therapy and adverse birth outcomes among HIV-infected women in Botswana. J Infect Dis 2012; 206(11): 1695-705. doi: 10.1093/infdis/jis553 PMID: 23066160
  17. Habib NA, Daltveit AK, Bergsjø P, Shao J, Oneko O, Lie RT. Maternal HIV status and pregnancy outcomes in northeastern Tanzania: a registry-based study. BJOG 2008; 115(5): 616-24. doi: 10.1111/j.1471-0528.2008.01672.x PMID: 18333943
  18. Haeri S, Shauer M, Dale M, Leslie J, Baker AM, Saddlemire S. Obstetric and newborn infant outcomes in human immunodeficiency virus–infected women who receive highly active antiretroviral therapy. Am J Obstet Gynecol 2009; 201(3): 315. doi: 10.1016/j.ajog.2009.06.017
  19. Suy A, Martínez E, Coll O, et al. Increased risk of pre-eclampsia and fetal death in HIV-infected pregnant women receiving highly active antiretroviral therapy. AIDS 2006; 20(1): 59-66. doi: 10.1097/01.aids.0000198090.70325.bd PMID: 16327320
  20. Le Doaré K, Bland R, Newell ML. Neurodevelopment in children born to HIV-infected mothers by infection and treatment status. Pediatrics 2012; 130(5): e1326-44. doi: 10.1542/peds.2012-0405 PMID: 23118140
  21. Lopez M, Figueras F, Hernandez S, et al. Association of HIV infection with spontaneous and iatrogenic preterm delivery. AIDS 2012; 26(1): 37-43. doi: 10.1097/QAD.0b013e32834db300 PMID: 22008651
  22. Thorne C, Patel D, Newell M-L. Increased risk of adverse pregnancy outcomes in HIV-infected women treated with highly active antiretroviral therapy in Europe. AIDS 2004; 18(17): 2337-9. doi: 10.1097/00002030-200411190-00019 PMID: 15577551
  23. Townsend CL, Schulte J, Thorne C, et al. Antiretroviral therapy and preterm delivery—a pooled analysis of data from the United States and Europe. BJOG 2010; 117(11): 1399-410. doi: 10.1111/j.1471-0528.2010.02689.x PMID: 20716250
  24. Awoleke JO. Maternal risk factors for low birth weight babies in Lagos, Nigeria. Arch Gynecol Obstet 2012; 285(1): 1-6. doi: 10.1007/s00404-011-1885-y PMID: 21431841
  25. Boyajian T, Shah PS, Murphy KE. Risk of preeclampsia in HIV-positive pregnant women receiving HAART: a matched cohort study. J Obstet Gynaecol Can 2012; 34(2): 136-41. doi: 10.1016/S1701-2163(16)35156-8 PMID: 22340062
  26. Cotter AM, Garcia AG, Duthely ML, Luke B, O’Sullivan MJ. Is antiretroviral therapy during pregnancy associated with an increased risk of preterm delivery, low birth weight, or stillbirth? J Infect Dis 2006; 193(9): 1195-201. doi: 10.1086/503045 PMID: 16586354
  27. Patil S, Bhosale R, Sambarey P, et al. Impact of maternal human immunodeficiency virus infection on pregnancy and birth outcomes in Pune, India. AIDS Care 2011; 23(12): 1562-9. doi: 10.1080/09540121.2011.579948 PMID: 21711178
  28. Phiri K, Williams PL, Dugan KB, et al. Antiretroviral therapy use during pregnancy and the risk of small-for-gestational-age birth in a Medicaid population. Pediatr Infect Dis J 2015; 34(7): e169-75. doi: 10.1097/INF.0000000000000712 PMID: 25851070
  29. Tuomala RE, Shapiro DE, Mofenson LM, et al. Antiretroviral therapy during pregnancy and the risk of an adverse outcome. N Engl J Med 2002; 346(24): 1863-70. doi: 10.1056/NEJMoa991159 PMID: 12063370
  30. Ørbæk M, Thorsteinsson K, Moseholm Larsen E, et al. Risk factors during pregnancy and birth-related complications in HIV -positive versus HIV-negative women in Denmark, 2002–2014. HIV Med 2020; 21(2): 84-95. doi: 10.1111/hiv.12798 PMID: 31603598
  31. Shinar S, Agrawal S, Ryu M, et al. Perinatal outcomes in women living with HIV-1 and receiving antiretroviral therapy—a systematic review and meta-analysis. Acta Obstet Gynecol Scand 2022; 101(2): 168-82. doi: 10.1111/aogs.14282 PMID: 34704251
  32. Patel B, Sengupta P. Machine learning for predicting cardiac events: what does the future hold? Expert Rev Cardiovasc Ther 2020; 18(2): 77-84. doi: 10.1080/14779072.2020.1732208 PMID: 32066289
  33. Petersen KJ, Strain J, Cooley S, Vaida F, Ances BM. Machine learning quantifies accelerated white-matter aging in persons with HIV. J Infect Dis 2022; 226(1): 49-58. doi: 10.1093/infdis/jiac156 PMID: 35481983
  34. Srisuriyajan P, Cheewaruangroj N, Polpinit P, Laovirojjanakul W. Cytomegalovirus retinitis screening using machine learning technology. Retina 2022; 42(9): 1709-15. doi: 10.1097/IAE.0000000000003506
  35. Duthe JC, Bouzille G, Sylvestre E, Chazard E, Arvieux C, Cuggia M. How to identify potential candidates for HIV pre-exposure prophylaxis: An AI algorithm reusing real-world hospital data. Stud Health Technol Inform 2021; 281: 714-8. doi: 10.3233/SHTI210265 PMID: 34042669
  36. Xu X, Ge Z, Chow EPF, et al. A machine-learning-based risk-prediction tool for hiv and sexually transmitted infections acquisition over the next 12 months. J Clin Med 2022; 11(7): 1818. doi: 10.3390/jcm11071818 PMID: 35407428
  37. Arab K, Spence AR, Czuzoj-Shulman N, Abenhaim HA. Pregnancy outcomes in HIV-positive women: a retrospective cohort study. Arch Gynecol Obstet 2017; 295(3): 599-606. doi: 10.1007/s00404-016-4271-y PMID: 28097445
  38. Bebell LM, Ngonzi J, Siedner MJ, et al. HIV Infection and risk of postpartum infection, complications and mortality in rural Uganda. AIDS Care 2018; 30(8): 943-53. doi: 10.1080/09540121.2018.1434119 PMID: 29451005
  39. Martin R, Boyer P, Hammill H, et al. Incidence of premature birth and neonatal respiratory disease in infants of HIV-positive mothers. J Pediatr 1997; 131(6): 851-6. doi: 10.1016/S0022-3476(97)70032-5 PMID: 9427889
  40. Zack RM, Golan J, Aboud S, Msamanga G, Spiegelman D, Fawzi W. Risk factors for preterm birth among HIV-infected Tanzanian women: a prospective study. Obstet Gynecol Int 2014; 2014: 201.
  41. HIV Country profile 2023. 2023. Available from:https://cfs.hivci.org/(accessed on 15-7-2024)
  42. Mirzaei H, Eybpoosh S, Mehrabi F, et al. Prevalence of acquired and transmitted HIV drug resistance in Iran: a systematic review and meta-analysis. BMC Infect Dis 2024; 24(1): 29. doi: 10.1186/s12879-023-08916-3 PMID: 38166733
  43. Calvert C, Ronsmans C. The contribution of HIV to pregnancy-related mortality. AIDS 2013; 27(10): 1631-9. doi: 10.1097/QAD.0b013e32835fd940 PMID: 23435296
  44. Dreyfuss ML, Msamanga GI, Spiegelman D, et al. Determinants of low birth weight among HIV-infected pregnant women in Tanzania. Am J Clin Nutr 2001; 74(6): 814-26. doi: 10.1093/ajcn/74.6.814 PMID: 11722965
  45. Kourtis AP, Schmid CH, Jamieson DJ, Lau J. Use of antiretroviral therapy in pregnant HIV-infected women and the risk of premature delivery: a meta-analysis. AIDS 2007; 21(5): 607-15. doi: 10.1097/QAD.0b013e32802ef2f6 PMID: 17314523
  46. Methazia J, Ngamasana EL, Utembe W, Ogunrombi M, Nyasulu P. An investigation of maternal anaemia among HIV infected pregnant women on antiretroviral treatment in Johannesburg, South Africa. Pan Afr Med J 2020; 37: 93. doi: 10.11604/pamj.2020.37.93.22244 PMID: 33425126
  47. Patel K, Shapiro DE, Brogly SB, et al. Prenatal protease inhibitor use and risk of preterm birth among HIV-infected women initiating antiretroviral drugs during pregnancy. J Infect Dis 2010; 201(7): 1035-44. doi: 10.1086/651232 PMID: 20196654
  48. Zaba B, Calvert C, Marston M, et al. Effect of HIV infection on pregnancy-related mortality in sub-Saharan Africa: secondary analyses of pooled community-based data from the network for Analysing Longitudinal Population-based HIV/AIDS data on Africa (ALPHA). Lancet 2013; 381(9879): 1763-71. doi: 10.1016/S0140-6736(13)60803-X PMID: 23683643
  49. Austin PC, White IR, Lee DS, van Buuren S. Missing data in clinical research: a tutorial on multiple imputation. Can J Cardiol 2021; 37(9): 1322-31. doi: 10.1016/j.cjca.2020.11.010 PMID: 33276049
  50. Han J, Kamber M. Data mining: concepts and techniques. Elsevier 2011.
  51. Corrales DC, Lasso E, Ledezma A, Corrales JC. Feature selection for classification tasks: Expert knowledge or traditional methods? J Intell Fuzzy Syst 2018; 34(5): 2825-35. doi: 10.3233/JIFS-169470
  52. El Aboudi N, Benhlima L. Review on wrapper feature selection approaches. Int Conf Engin 2016; 2016: 1-5.
  53. Masoudi-Sobhanzadeh Y, Motieghader H, Masoudi-Nejad A. FeatureSelect: a software for feature selection based on machine learning approaches. BMC Bioinformatics 2019; 20(1): 170. doi: 10.1186/s12859-019-2754-0 PMID: 30943889
  54. Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23(19): 2507-17.
  55. Aviram A, Guy L, Ashwal E, Hiersch L, Yogev Y, Hadar E. Pregnancy outcome in pregnancies complicated with gestational diabetes mellitus and late preterm birth. Diabetes Res Clin Pract 2016; 113: 198-203. doi: 10.1016/j.diabres.2015.12.018 PMID: 26810272
  56. Metoki H, Iwama N, Hamada H, et al. Hypertensive disorders of pregnancy: definition, management, and out-of-office blood pressure measurement. Hypertens Res 2022; 45(8): 1298-309. doi: 10.1038/s41440-022-00965-6 PMID: 35726086
  57. Hoyt AT, Wilkinson AV, Langlois PH, et al. Prenatal exposure to tobacco and adverse birth outcomes: effect modification by folate intake during pregnancy. Matern Health Neonatol Perinatol 2022; 8(1): 6. doi: 10.1186/s40748-022-00141-1 PMID: 36096906
  58. Weile LKK, Hegaard HK, Wu C, et al. Alcohol intake in early pregnancy and spontaneous preterm birth: a cohort study. Alcohol Clin Exp Res 2020; 44(2): 511-21. doi: 10.1111/acer.14257 PMID: 31803953
  59. Monebenimp F, Nga-Essono DE, Zoung-Kany Bissek AC, Chelo D, Tetanye E. HIV exposure and related newborn morbidity and mortality in the University Teaching Hospital of Yaoundé, Cameroon. Pan Afr Med J 2011; 8(1): 43. doi: 10.4314/pamj.v8i1.71160 PMID: 22121451
  60. Rebnord T, Mmbaga BT, Sandøy IF, et al. Time trends in perinatal outcomes among HIV-positive pregnant women in Northern Tanzania: A registry-based study. PLoS One 2023; 18(8): e0289740. doi: 10.1371/journal.pone.0289740 PMID: 37561712
  61. Li H, Liu J, Tan D, et al. Maternal HIV infection and risk of adverse pregnancy outcomes in Hunan province, China. Medicine (Baltimore) 2020; 99(8): e19213. doi: 10.1097/MD.0000000000019213 PMID: 32080112
  62. Atowoju I, Dawer P, Asrani M, Panjiyar B. Impact of maternal HIV infection on perinatal outcomes: A systematic review. Int J Gynaecol Obstet 2024; 166(1): 35-43. doi: 10.1002/ijgo.15528
  63. Eke AC, Mirochnick M, Lockman S. Antiretroviral therapy and adverse pregnancy outcomes in people living with HIV. N Engl J Med 2023; 388(4): 344-56. doi: 10.1056/NEJMra2212877 PMID: 36720135
  64. Fentie EA, Yeshita HY, Bokie MM. Low birth weight and associated factors among HIV positive and negative mothers delivered in northwest Amhara region referral hospitals, Ethiopia,2020 a comparative crossectional study. PLoS One 2022; 17(2): e0263812. doi: 10.1371/journal.pone.0263812 PMID: 35148350
  65. Kim HY, Kasonde P, Mwiya M, et al. Pregnancy loss and role of infant HIV status on perinatal mortality among HIV-infected women. BMC Pediatr 2012; 12(1): 138. doi: 10.1186/1471-2431-12-138 PMID: 22937874
  66. Twabi HS, Manda SO, Small DS. Assessing the effects of maternal HIV infection on pregnancy outcomes using cross-sectional data in Malawi. BMC Public Health 2020; 20(1): 974. doi: 10.1186/s12889-020-09046-0 PMID: 32571265

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers