Revolutionizing Infertility Management through Novel Peptide-based Targets


如何引用文章

全文:

详细

:Around 48 million couples and 186 million people worldwide have infertility; of these, approximately 85% have an identifiable cause, the most common being ovulatory dysfunctions, male infertility, polycystic ovary syndrome, and tubule disease. The remaining 15% have infertility for unknown reasons, including lifestyle and environmental factors. The regulation of the hypothalamic- pituitary-adrenal axis (HPA) is crucial for the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which are essential for female reproductive functions. GnRH is the primary reproductive axis regulator. The pattern of GnRH, FSH, and LH release is determined by its pulsatile secretion, which in turn controls endocrine function and gamete maturation in the gonads. Peptides called Kisspeptin (KP), Neurokinin-B (NKB), and Orexin influence both positive and negative feedback modulation of GnRH, FSH, and LH secretion in reproduction. This review article mainly focuses on the historical perspective, isoform, and signaling pathways of KP, NKB, and Orexin novel peptide-based targets including clinical and preclinical studies and having a promising effect in the management of infertility.

作者简介

Vijay Kumar

Department of Pharmacology, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy

Email: info@benthamscience.net

Gaurav Doshi

Department of Pharmacology, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Szamatowicz, M.; Szamatowicz, J. Proven and unproven methods for diagnosis and treatment of infertility. Adv. Med. Sci., 2020, 65(1), 93-96. doi: 10.1016/j.advms.2019.12.008 PMID: 31923772
  2. Larsen, U. Research on infertility: Which definition should we use? Fertil. Steril., 2005, 83(4), 846-852. doi: 10.1016/j.fertnstert.2004.11.033 PMID: 15820788
  3. Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem., 2018, 62, 2-10. doi: 10.1016/j.clinbiochem.2018.03.012 PMID: 29555319
  4. Steptoe, P.C.; Edwards, R.G. Birth after the reimplantation of a human embryo. Lancet, 1978, 312(8085), 366. doi: 10.1016/S0140-6736(78)92957-4 PMID: 79723
  5. Skirbekk, V.; Blekesaune, M. Personality traits increasingly important for male fertility: Evidence from Norway. Eur. J. Pers., 2014, 28(6), 521-529. doi: 10.1002/per.1936
  6. Manouchehri, A.; Shokri, S.; Pirhadi, M.; Karimi, M.; Abbaszadeh, S.; Mirzaei, G.; Bahmani, M. The effects of toxic heavy metals lead, cadmium and copper on the epidemiology of male and female infertility. JBRA Assist. Reprod., 2022, 26(4), 627-630. doi: 10.5935/1518-0557.20220013 PMID: 35916450
  7. Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging, 2019, 11(23), 10952-10991. doi: 10.18632/aging.102497 PMID: 31790362
  8. Gruzieva, O.; Merid, S.K.; Chen, S.; Mukherjee, N.; Hedman, A.M.; Almqvist, C.; Andolf, E.; Jiang, Y.; Kere, J.; Scheynius, A.; Söderhäll, C.; Ullemar, V.; Karmaus, W.; Melén, E.; Arshad, S.H.; Pershagen, G. DNA methylation trajectories during pregnancy. Epigenet. Insights, 2019, 12. doi: 10.1177/2516865719867090 PMID: 31453433
  9. Hernáez, Á.; Rogne, T.; Skåra, K.H.; Håberg, S.E.; Page, C.M.; Fraser, A.; Burgess, S.; Lawlor, D.A.; Magnus, M.C. Body mass index and subfertility: Multivariable regression and mendelian randomization analyses in the norwegian mother, father and child cohort study. Hum. Reprod., 2021, 36(12), 3141-3151. doi: 10.1093/humrep/deab224 PMID: 34668019
  10. Boedt, T.; Vanhove, A.C.; Vercoe, M.A.; Matthys, C.; Dancet, E.; Lie Fong, S. Preconception lifestyle advice for people with infertility. Cochrane Libr., 2021, 2021(4), CD008189. doi: 10.1002/14651858.CD008189.pub3 PMID: 33914901
  11. Starc, A.; Trampuš, M.; Pavan Jukić, D.; Rotim, C.; Jukić, T.; Polona Mivšek, A. Infertility and sexual dysfunctions: A systematic literature review. Acta Clin. Croat., 2019, 58(3), 508-515. doi: 10.20471/acc.2019.58.03.15 PMID: 31969764
  12. Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol., 2013, 11(1), 66. doi: 10.1186/1477-7827-11-66 PMID: 23870423
  13. Huijben, M.; Huijsmans, R.L.N.; Lock, M.T.W.T.; de Kemp, V.F.; de Kort, L.M.O.; van Breda, J.H.M.K. Clomiphene citrate for male infertility: A systematic review and meta-analysis. Andrology, 2023, 11(6), 987-996. doi: 10.1111/andr.13388 PMID: 36680549
  14. Franik, S.; Le, Q.K.; Kremer, J.A.M.; Kiesel, L.; Farquhar, C. Aromatase inhibitors (letrozole) for ovulation induction in infertile women with polycystic ovary syndrome. Cochrane Libr., 2022, 2022(9), CD010287. doi: 10.1002/14651858.CD010287.pub4 PMID: 36165742
  15. Santi, D.; Spaggiari, G.; Granata, A.R.M.; Simoni, M. Real-world evidence analysis of the follicle-stimulating hormone use in male idiopathic infertility. Best Pract. Res. Clin. Obstet. Gynaecol., 2022, 85(Pt B), 121-133. doi: 10.1016/j.bpobgyn.2022.04.004 PMID: 35618626
  16. Esteves, S.C.; Achermann, A.P.P.; Simoni, M.; Santi, D.; Casarini, L. Male infertility and gonadotropin treatment: What can we learn from real-world data? Best Pract. Res. Clin. Obstet. Gynaecol., 2023, 86, 102310. doi: 10.1016/j.bpobgyn.2022.102310 PMID: 36682942
  17. Witwit, S.J. Improving pregnancy rate in infertile patients with polycystic ovarian syndrome receiving clomiphene citrate and cabergoline in euprolactinomic women in single cycle treatment. Ginekol. Pol., 2022, 94(6), 456-462. doi: 10.5603/GP.a2022.0070 PMID: 35984341
  18. Carson, S.A.; Kallen, A.N. Diagnosis and management of infertility. JAMA, 2021, 326(1), 65-76. doi: 10.1001/jama.2021.4788 PMID: 34228062
  19. Dennett, C.C.; Simon, J. The role of polycystic ovary syndrome in reproductive and metabolic health: Overview and approaches for treatment. Diabetes Spectr., 2015, 28(2), 116-120. doi: 10.2337/diaspect.28.2.116 PMID: 25987810
  20. Ambildhuke, K.; Pajai, S.; Chimegave, A.; Mundhada, R.; Kabra, P. A review of tubal factors affecting fertility and its management. Cureus, 2022, 14(11), e30990. doi: 10.7759/cureus.30990 PMID: 36475176
  21. Bulletti, C.; Coccia, M.E.; Battistoni, S.; Borini, A. Endometriosis and infertility. J. Assist. Reprod. Genet., 2010, 27(8), 441-447. doi: 10.1007/s10815-010-9436-1 PMID: 20574791
  22. Garrido, N.; Navarro, J.; García-Velasco, J.; Remoh, J.; Pellice, A.; Simón, C. The endometrium versus embryonic quality in endometriosis-related infertility. Hum. Reprod. Update, 2002, 8(1), 95-103. doi: 10.1093/humupd/8.1.95 PMID: 11866246
  23. Bosteels, J.; van Wessel, S.; Weyers, S.; Broekmans, F.J.; D’Hooghe, T.M.; Bongers, M.Y.; Mol, B.W.J. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Libr., 2018, 2018(12), CD009461. doi: 10.1002/14651858.CD009461.pub4 PMID: 30521679
  24. Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, challenges, and guiding treatment. J. Clin. Endocrinol. Metab., 2021, 106(3), e1071-e1083. doi: 10.1210/clinem/dgaa839 PMID: 33211867
  25. Gnanadass, S.A.; Prabhu, Y.D.; Gopalakrishnan, A.V. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update. Arch. Gynecol. Obstet., 2021, 303(3), 631-643. doi: 10.1007/s00404-020-05951-2 PMID: 33439300
  26. Mohamed-Hussein, Z.A.; Harun, S. Construction of a polycystic ovarian syndrome (PCOS) pathway based on the interactions of PCOS-related proteins retrieved from bibliomic data. Theor. Biol. Med. Model., 2009, 6(1), 18. doi: 10.1186/1742-4682-6-18 PMID: 19723303
  27. Lin, L.H.; Baracat, M.C.P.; Maciel, G.A.R.; Soares, J.M., Jr; Baracat, E.C. Androgen receptor gene polymorphism and polycystic ovary syndrome. Int. J. Gynaecol. Obstet., 2013, 120(2), 115-118. doi: 10.1016/j.ijgo.2012.08.016 PMID: 23182796
  28. Shannon, M.; Wang, Y. Polycystic ovary syndrome: A common but often unrecognized condition. J. Midwifery Womens Health, 2012, 57(3), 221-230. doi: 10.1111/j.1542-2011.2012.00161.x PMID: 22594862
  29. Sadeghi, H.M.; Adeli, I.; Calina, D.; Docea, A.O.; Mousavi, T.; Daniali, M.; Nikfar, S.; Tsatsakis, A.; Abdollahi, M. Polycystic ovary syndrome: A comprehensive review of pathogenesis, management, and drug repurposing. Int. J. Mol. Sci., 2022, 23(2), 583. doi: 10.3390/ijms23020583 PMID: 35054768
  30. Xie, Q.; Kang, Y.; Zhang, C.; Xie, Y.; Wang, C.; Liu, J.; Yu, C.; Zhao, H.; Huang, D. The role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction. Front. Endocrinol., 2022, 13, 925206. doi: 10.3389/fendo.2022.925206 PMID: 35837314
  31. Mills, E.G.; Dhillo, W.S. Invited review: Translating kisspeptin and neurokinin B biology into new therapies for reproductive health. J. Neuroendocrinol., 2022, 34(10), e13201. doi: 10.1111/jne.13201 PMID: 36262016
  32. Lee, D.K.; Nguyen, T.; O’Neill, G.P.; Cheng, R.; Liu, Y.; Howard, A.D.; Coulombe, N.; Tan, C.P.; Tang-Nguyen, A.T.; George, S.R.; O’Dowd, B.F. Discovery of a receptor related to the galanin receptors. FEBS Lett., 1999, 446(1), 103-107. doi: 10.1016/S0014-5793(99)00009-5 PMID: 10100623
  33. Ohtaki, T.; Shintani, Y.; Honda, S.; Matsumoto, H.; Hori, A.; Kanehashi, K.; Terao, Y.; Kumano, S.; Takatsu, Y.; Masuda, Y.; Ishibashi, Y.; Watanabe, T.; Asada, M.; Yamada, T.; Suenaga, M.; Kitada, C.; Usuki, S.; Kurokawa, T.; Onda, H.; Nishimura, O.; Fujino, M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411(6837), 613-617. doi: 10.1038/35079135 PMID: 11385580
  34. Muir, A.I.; Chamberlain, L.; Elshourbagy, N.A.; Michalovich, D.; Moore, D.J.; Calamari, A.; Szekeres, P.G.; Sarau, H.M.; Chambers, J.K.; Murdock, P.; Steplewski, K.; Shabon, U.; Miller, J.E.; Middleton, S.E.; Darker, J.G.; Larminie, C.G.C.; Wilson, S.; Bergsma, D.J.; Emson, P.; Faull, R.; Philpott, K.L.; Harrison, D.C. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem., 2001, 276(31), 28969-28975. doi: 10.1074/jbc.M102743200 PMID: 11387329
  35. Kotani, M.; Detheux, M.; Vandenbogaerde, A.; Communi, D.; Vanderwinden, J.M.; Le Poul, E.; Brézillon, S.; Tyldesley, R.; Suarez-Huerta, N.; Vandeput, F.; Blanpain, C.; Schiffmann, S.N.; Vassart, G.; Parmentier, M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem., 2001, 276(37), 34631-34636. doi: 10.1074/jbc.M104847200 PMID: 11457843
  36. de Roux, N.; Genin, E.; Carel, J.C.; Matsuda, F.; Chaussain, J.L.; Milgrom, E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 10972-10976. doi: 10.1073/pnas.1834399100 PMID: 12944565
  37. Silveira, L.G.; Noel, S.D.; Silveira-Neto, A.P.; Abreu, A.P.; Brito, V.N.; Santos, M.G.; Bianco, S.D.C.; Kuohung, W.; Xu, S.; Gryngarten, M.; Escobar, M.E.; Arnhold, I.J.P.; Mendonca, B.B.; Kaiser, U.B.; Latronico, A.C. Mutations of the KISS1 gene in disorders of puberty. J. Clin. Endocrinol. Metab., 2010, 95(5), 2276-2280. doi: 10.1210/jc.2009-2421 PMID: 20237166
  38. Babiker, A.; Al Shaikh, A. The role of kisspeptin signalling in control of reproduction in genetically similar species. Sudan. J. Paediatr., 2016, 16(1), 9-16. PMID: 27651548
  39. Uenoyama, Y.; Nagae, M.; Tsuchida, H.; Inoue, N.; Tsukamura, H. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front. Endocrinol., 2021, 12, 724632. doi: 10.3389/fendo.2021.724632 PMID: 34566891
  40. Rance, N.; Young, W.S., III Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women. Endocrinology, 1991, 128(5), 2239-2247. doi: 10.1210/endo-128-5-2239 PMID: 1708331
  41. Topaloglu, A.K.; Reimann, F.; Guclu, M.; Yalin, A.S.; Kotan, L.D.; Porter, K.M.; Serin, A.; Mungan, N.O.; Cook, J.R.; Ozbek, M.N.; Imamoglu, S.; Akalin, N.S.; Yuksel, B.; O’Rahilly, S.; Semple, R.K. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet., 2009, 41(3), 354-358. doi: 10.1038/ng.306 PMID: 19079066
  42. Patel, B.; Koysombat, K.; Mills, E.G.; Tsoutsouki, J.; Comninos, A.N.; Abbara, A. The emerging therapeutic potential of kisspeptin and neurokinin B. Endocr. Rev., 2024, 45(1), 30-68. doi: 10.1210/endrev/bnad023 PMID: 37467734
  43. Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; Arch, J.R.S.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92(4), 573-585. doi: 10.1016/S0092-8674(00)80949-6 PMID: 9491897
  44. Russell, S.H.; Small, C.J.; Dakin, C.L.; Abbott, C.R.; Morgan, D.G.A.; Ghatei, M.A.; Bloom, S.R. The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. J. Neuroendocrinol., 2001, 13(6), 561-566. doi: 10.1046/j.1365-2826.2001.00672.x PMID: 11412343
  45. Porkka-Heiskanen, T.; Kalinchuk, A.; Alanko, L.; Huhtaniemi, I.; Stenberg, D. Orexin A and B levels in the hypothalamus of female rats: the effects of the estrous cycle and age. Eur. J. Endocrinol., 2004, 150(5), 737-742. doi: 10.1530/eje.0.1500737 PMID: 15132733
  46. Gottsch, M.L.; Clifton, D.K.; Steiner, R.A. From KISS1 to kisspeptins: An historical perspective and suggested nomenclature. Peptides, 2009, 30(1), 4-9. doi: 10.1016/j.peptides.2008.06.016 PMID: 18644415
  47. Lee, J.H.; Miele, M.E.; Hicks, D.J.; Phillips, K.K.; Trent, J.M.; Weissman, B.E.; Welch, D.R. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst., 1996, 88(23), 1731-1737. doi: 10.1093/jnci/88.23.1731 PMID: 8944003
  48. West, A.; Vojta, P.J.; Welch, D.R.; Weissman, B.E. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1). Genomics, 1998, 54(1), 145-148. doi: 10.1006/geno.1998.5566 PMID: 9806840
  49. Stafford, L.J.; Xia, C.; Ma, W.; Cai, Y.; Liu, M. Identification and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-coupled receptor. Cancer Res., 2002, 62(19), 5399-5404. PMID: 12359743
  50. Lehman, M.N.; Hileman, S.M.; Goodman, R.L. Neuroanatomy of the kisspeptin signaling system in mammals: Comparative and developmental aspects. Adv. Exp. Med. Biol., 2013, 784, 27-62. doi: 10.1007/978-1-4614-6199-9_3 PMID: 23550001
  51. Parhar, I.S.; Ogawa, S.; Sakuma, Y. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology, 2004, 145(8), 3613-3618. doi: 10.1210/en.2004-0395 PMID: 15155576
  52. Page, N.M.; Morrish, D.W.; Weston-Bell, N.J. Differential mRNA splicing and precursor processing of neurokinin B in neuroendocrine tissues. Peptides, 2009, 30(8), 1508-1513. doi: 10.1016/j.peptides.2009.04.023 PMID: 19433124
  53. Almeida, T.A.; Rojo, J.; Nieto, P.M.; Pinto, F.M.; Hernandez, M.; Martín, J.D.; Candenas, M.L. Tachykinins and tachykinin receptors: Structure and activity relationships. Curr. Med. Chem., 2004, 11(15), 2045-2081. doi: 10.2174/0929867043364748 PMID: 15279567
  54. Schwyzer, R. Membrane-assisted molecular mechanism of neurokinin receptor subtype selection. EMBO J., 1987, 6(8), 2255-2259. doi: 10.1002/j.1460-2075.1987.tb02498.x PMID: 2822384
  55. Bonner, T.I.; Affolter, H.U.; Young, A.C.; Young, W.S., III A cDNA encoding the precursor of the rat neuropeptide, neurokinin B. Brain Res. Mol. Brain Res., 1987, 2(3), 243-249. doi: 10.1016/0169-328X(87)90031-3 PMID: 3479225
  56. Chawla, M.K.; Gutierrez, G.M.; Young, W.S., III; McMullen, N.T.; Rance, N.E. Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. J. Comp. Neurol., 1997, 384(3), 429-442. doi: 10.1002/(SICI)1096-9861(19970804)384:33.0.CO;2-5 PMID: 9254037
  57. Marksteiner, J.; Sperk, G.; Krause, J.E. Distribution of neurons expressing neurokinin B in the rat brain: Immunohistochemistry and in situ hybridization. J. Comp. Neurol., 1992, 317(4), 341-356. doi: 10.1002/cne.903170403 PMID: 1374442
  58. Grant, A.D.; Akhtar, R.; Gerard, N.P.; Brain, S.D.; Neurokinin, B. Neurokinin B induces oedema formation in mouse lung via tachykinin receptor-independent mechanisms. J. Physiol., 2002, 543(3), 1007-1014. doi: 10.1113/jphysiol.2002.018846 PMID: 12231654
  59. Regoli, D.; Boudon, A.; Fauchére, J.L. Receptors and antagonists for substance P and related peptides. Pharmacol. Rev., 1994, 46(4), 551-599. PMID: 7534932
  60. de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.B.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.F.; Gautvik, V.T.; Bartlett, F.S., II; Frankel, W.N.; van den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 322-327. doi: 10.1073/pnas.95.1.322 PMID: 9419374
  61. Zink, A.N.; Perez-Leighton, C.E.; Kotz, C.M. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process. Front. Syst. Neurosci., 2014, 8, 211. doi: 10.3389/fnsys.2014.00211 PMID: 25408639
  62. Safdar, M.; Liang, A.; Rajput, S.A.; Abbas, N.; Zubair, M.; Shaukat, A.; Rehman, A.; Jamil, H.; Guo, Y.; Ullah, F.; Yang, L. Orexin-A regulates follicular growth, proliferation, cell cycle and apoptosis in mouse primary granulosa cells via the AKT/ERK signaling pathway. Molecules, 2021, 26(18), 5635. doi: 10.3390/molecules26185635 PMID: 34577105
  63. Couvineau, A.; Nicole, P.; Gratio, V.; Voisin, T. The orexin receptors: Structural and anti-tumoral properties. Front. Endocrinol., 2022, 13, 931970. doi: 10.3389/fendo.2022.931970 PMID: 35966051
  64. Tang, J.; Chen, J.; Ramanjaneya, M.; Punn, A.; Conner, A.C.; Randeva, H.S. The signalling profile of recombinant human orexin-2 receptor. Cell. Signal., 2008, 20(9), 1651-1661. doi: 10.1016/j.cellsig.2008.05.010 PMID: 18599270
  65. Randeva, H.S.; Karteris, E.; Grammatopoulos, D.; Hillhouse, E.W. Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: Implications for adrenal function and energy homeostasis. J. Clin. Endocrinol. Metab., 2001, 86(10), 4808-4813. doi: 10.1210/jcem.86.10.7921 PMID: 11600545
  66. Karteris, E.; Chen, J.; Randeva, H.S. Expression of human prepro-orexin and signaling characteristics of orexin receptors in the male reproductive system. J. Clin. Endocrinol. Metab., 2004, 89(4), 1957-1962. doi: 10.1210/jc.2003-031778 PMID: 15070969
  67. Digby, J.E.; Chen, J.; Tang, J.Y.; Lehnert, H.; Matthews, R.N.; Randeva, H.S. Orexin receptor expression in human adipose tissue: Effects of orexin-A and orexin-B. J. Endocrinol., 2006, 191(1), 129-136. doi: 10.1677/joe.1.06886 PMID: 17065396
  68. Yamanaka, A.; Kunii, K.; Nambu, T.; Tsujino, N.; Sakai, A.; Matsuzaki, I.; Miwa, Y.; Katsutoshi Goto; Sakurai, T. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res., 2000, 859(2), 404-409. doi: 10.1016/S0006-8993(00)02043-6 PMID: 10719096
  69. Scammell, T.E.; Winrow, C.J. Orexin receptors: Pharmacology and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2011, 51(1), 243-266. doi: 10.1146/annurev-pharmtox-010510-100528 PMID: 21034217
  70. Sakurai, T.; Moriguchi, T.; Furuya, K.; Kajiwara, N.; Nakamura, T.; Yanagisawa, M.; Goto, K. Structure and function of human prepro-orexin gene. J. Biol. Chem., 1999, 274(25), 17771-17776. doi: 10.1074/jbc.274.25.17771 PMID: 10364220
  71. Ammoun, S.; Holmqvist, T.; Shariatmadari, R.; Oonk, H.B.; Detheux, M.; Parmentier, M.; Åkerman, K.E.O.; Kukkonen, J.P. Distinct recognition of OX1 and OX2 receptors by orexin peptides. J. Pharmacol. Exp. Ther., 2003, 305(2), 507-514. doi: 10.1124/jpet.102.048025 PMID: 12606634
  72. Chieffi, S.; Carotenuto, M.; Monda, V.; Valenzano, A.; Villano, I.; Precenzano, F.; Tafuri, D.; Salerno, M.; Filippi, N.; Nuccio, F.; Ruberto, M.; De Luca, V.; Cipolloni, L.; Cibelli, G.; Mollica, M.P.; Iacono, D.; Nigro, E.; Monda, M.; Messina, G.; Messina, A. Orexin system: The key for a healthy life. Front. Physiol., 2017, 8, 357. doi: 10.3389/fphys.2017.00357 PMID: 28620314
  73. Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The orexin/receptor system: Molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci., 2018, 11, 220. doi: 10.3389/fnmol.2018.00220 PMID: 30002617
  74. Russell, S.H.; Small, C.J.; Kennedy, A.R.; Stanley, S.A.; Seth, A.; Murphy, K.G.; Taheri, S.; Ghatei, M.A.; Bloom, S.R. Orexin A interactions in the hypothalamo-pituitary gonadal axis. Endocrinology, 2001, 142(12), 5294-5302. doi: 10.1210/endo.142.12.8558 PMID: 11713229
  75. Nitkiewicz, A.; Smolinska, N.; Maleszka, A.; Kiezun, M.; Kaminski, T. Localization of orexin A and orexin B in the porcine uterus. Reprod. Biol., 2012, 12(2), 135-155. doi: 10.1016/S1642-431X(12)60082-5 PMID: 22850467
  76. Barb, C.R.; Matteri, R.L. Orexin-B modulates luteinizing hormone and growth hormone secretion from porcine pituitary cells in culture. Domest. Anim. Endocrinol., 2005, 28(3), 331-337. doi: 10.1016/j.domaniend.2004.09.005 PMID: 15760673
  77. Small, C.J.; Goubillon, M.L.; Murray, J.F.; Siddiqui, A.; Grimshaw, S.E.; Young, H.; Sivanesan, V.; Kalamatianos, T.; Kennedy, A.R.; Coen, C.W.; Bloom, S.R.; Wilson, C.A. Central orexin A has site-specific effects on luteinizing hormone release in female rats. Endocrinology, 2003, 144(7), 3225-3236. doi: 10.1210/en.2002-0041 PMID: 12810579
  78. Jászberényi, M.; Bujdosó, E.; Pataki, I.; Telegdy, G. Effects of orexins on the hypothalamic-pituitary-adrenal system. J. Neuroendocrinol., 2000, 12(12), 1174-1178. doi: 10.1046/j.1365-2826.2000.00572.x PMID: 11106974
  79. Pu, S. Orexins, a novel family of hypothalamic neuropeptides, modulate pituitary luteinizing hormone secretion in an ovarian steroid-dependent manner.. Regul. Pept., 1998, 78(1-3), 133-136. doi: 10.1016/S0167-0115(98)00128-1 PMID: 9879756
  80. Hori, A.; Honda, S.; Asada, M.; Ohtaki, T.; Oda, K.; Watanabe, T.; Shintani, Y.; Yamada, T.; Suenaga, M.; Kitada, C.; Onda, H.; Kurokawa, T.; Nishimura, O.; Fujino, M. Metastin suppresses the motility and growth of CHO cells transfected with its receptor. Biochem. Biophys. Res. Commun., 2001, 286(5), 958-963. doi: 10.1006/bbrc.2001.5470 PMID: 11527393
  81. Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30. doi: 10.3322/caac.21166 PMID: 23335087
  82. Ringel, M.D.; Hardy, E.; Bernet, V.J.; Burch, H.B.; Schuppert, F.; Burman, K.D.; Saji, M. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J. Clin. Endocrinol. Metab., 2002, 87(5), 2399-2399. doi: 10.1210/jcem.87.5.8626 PMID: 11994395
  83. Pampillo, M.; Camuso, N.; Taylor, J.E.; Szereszewski, J.M.; Ahow, M.R.; Zajac, M.; Millar, R.P.; Bhattacharya, M.; Babwah, A.V. Regulation of GPR54 signaling by GRK2 and β-Arrestin. Mol. Endocrinol., 2009, 23(12), 2060-2074. doi: 10.1210/me.2009-0013 PMID: 19846537
  84. Szereszewski, J.M.; Pampillo, M.; Ahow, M.R.; Offermanns, S.; Bhattacharya, M.; Babwah, A.V. GPR54 regulates ERK1/2 activity and hypothalamic gene expression in a Gα(q/11) and β-arrestin-dependent manner. PLoS One, 2010, 5(9), e12964. doi: 10.1371/journal.pone.0012964 PMID: 20886089
  85. Goertzen, C.G.; Dragan, M.; Turley, E.; Babwah, A.V.; Bhattacharya, M. KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK. Cell. Signal., 2016, 28(3), 165-176. doi: 10.1016/j.cellsig.2015.12.010 PMID: 26721186
  86. Abbara, A.; Eng, P.C.; Phylactou, M.; Clarke, S.A.; Richardson, R.; Sykes, C.M.; Phumsatitpong, C.; Mills, E.; Modi, M.; Izzi-Engbeaya, C.; Papadopoulou, D.; Purugganan, K.; Jayasena, C.N.; Webber, L.; Salim, R.; Owen, B.; Bech, P.; Comninos, A.N.; McArdle, C.A.; Voliotis, M.; Tsaneva-Atanasova, K.; Moenter, S.; Hanyaloglu, A.; Dhillo, W.S. Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders. J. Clin. Invest., 2020, 130(12), 6739-6753. doi: 10.1172/JCI139681 PMID: 33196464
  87. Chan, Y.M.; Lippincott, M.F.; Sales Barroso, P.; Alleyn, C.; Brodsky, J.; Granados, H.; Roberts, S.A.; Sandler, C.; Srivatsa, A.; Seminara, S.B. Using kisspeptin to predict pubertal outcomes for youth with pubertal delay. J. Clin. Endocrinol. Metab., 2020, 105(8), e2717-e2725. doi: 10.1210/clinem/dgaa162 PMID: 32232399
  88. Vuralli, D.; Ciftci, N.; Demirbilek, H. Serum kisspeptin, neurokinin B and inhibin B levels can be used as alternative parameters to distinguish idiopathic CPP from premature thelarche in the early stages of puberty. Clin. Endocrinol., 2023, 98(6), 788-795. doi: 10.1111/cen.14906 PMID: 36879296
  89. Podfigurna, A.; Maciejewska-Jeske, M.; Meczekalski, B.; Genazzani, A.D. Kisspeptin and LH pulsatility in patients with functional hypothalamic amenorrhea. Endocrine, 2020, 70(3), 635-643. doi: 10.1007/s12020-020-02481-4 PMID: 32915434
  90. Akad, M.; Socolov, R.; Furnică, C.; Covali, R.; Stan, C.D.; Crauciuc, E.; Pavaleanu, I. Kisspeptin variations in patients with polycystic ovary syndrome—A prospective case control study. Medicina, 2022, 58(6), 776. doi: 10.3390/medicina58060776 PMID: 35744039
  91. Hoskova, K.; Kayton Bryant, N.; Chen, M.E.; Nachtigall, L.B.; Lippincott, M.F.; Balasubramanian, R.; Seminara, S.B. Kisspeptin overcomes GnRH neuronal suppression secondary to hyperprolactinemia in humans. J. Clin. Endocrinol. Metab., 2022, 107(8), e3515-e3525. doi: 10.1210/clinem/dgac166 PMID: 35323937
  92. Jayasena, C.N.; Abbara, A.; Comninos, A.N.; Nijher, G.M.K.; Christopoulos, G.; Narayanaswamy, S.; Izzi-Engbeaya, C.; Sridharan, M.; Mason, A.J.; Warwick, J.; Ashby, D.; Ghatei, M.A.; Bloom, S.R.; Carby, A.; Trew, G.H.; Dhillo, W.S. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J. Clin. Invest., 2014, 124(8), 3667-3677. doi: 10.1172/JCI75730 PMID: 25036713
  93. Silva, P.H.A.; Romão, L.G.M.; Freitas, N.P.A.; Carvalho, T.R.; Porto, M.E.M.P.; Araujo Júnior, E.; Cavalcante, M.B. Kisspeptin as a predictor of miscarriage: A systematic review. J. Matern. Fetal Neonatal Med., 2023, 36(1), 2197097. doi: 10.1080/14767058.2023.2197097 PMID: 37015836
  94. Pérez-López, F.R.; López-Baena, M.T.; Varikasuvu, S.R.; Ruiz-Román, R.; Fuentes-Carrasco, M.; Savirón-Cornudella, R. Preeclampsia and gestational hypertension are associated to low maternal circulating kisspeptin levels: A systematic review and meta-analysis. Gynecol. Endocrinol., 2021, 37(12), 1055-1062. doi: 10.1080/09513590.2021.2004396 PMID: 34779331
  95. Young, J.; Bouligand, J.; Francou, B.; Raffin-Sanson, M.L.; Gaillez, S.; Jeanpierre, M.; Grynberg, M.; Kamenicky, P.; Chanson, P.; Brailly-Tabard, S.; Guiochon-Mantel, A. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J. Clin. Endocrinol. Metab., 2010, 95(5), 2287-2295. doi: 10.1210/jc.2009-2600 PMID: 20194706
  96. Ho, M.; Su, Y.; Yeung, W.; Wong, Y. Regulation of transcription factors by heterotrimeric G proteins. Curr. Mol. Pharmacol., 2009, 2(1), 19-31. doi: 10.2174/1874467210902010019 PMID: 20021442
  97. Szeliga, A.; Rudnicka, E.; Maciejewska-Jeske, M.; Kucharski, M.; Kostrzak, A.; Hajbos, M.; Niwczyk, O.; Smolarczyk, R.; Meczekalski, B. Neuroendocrine determinants of polycystic ovary syndrome. Int. J. Environ. Res. Public Health, 2022, 19(5), 3089. doi: 10.3390/ijerph19053089 PMID: 35270780
  98. Ye, L.; Yang, Y.; Li, C.; Zhang, J.; Wang, W.; Ma, M.; Xu, H.; Zhang, W.; Zou, F.; Hu, Z.; Wang, H.; Tian, J. Synthesis and evaluation of piperazinotriazoles. Discovery of a potent and orally bioavailable neurokinin-3 receptor inhibitor. Eur. J. Med. Chem., 2023, 257, 115486. doi: 10.1016/j.ejmech.2023.115486 PMID: 37247507
  99. Fraser, G.L.; Obermayer-Pietsch, B.; Laven, J.; Griesinger, G.; Pintiaux, A.; Timmerman, D.; Fauser, B.C.J.M.; Lademacher, C.; Combalbert, J.; Hoveyda, H.R.; Ramael, S. Randomized controlled trial of neurokinin 3 receptor antagonist fezolinetant for treatment of polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2021, 106(9), e3519-e3532. doi: 10.1210/clinem/dgab320 PMID: 34000049
  100. Lederman, S.; Ottery, F.D.; Cano, A.; Santoro, N.; Shapiro, M.; Stute, P.; Thurston, R.C.; English, M.; Franklin, C.; Lee, M.; Neal-Perry, G. Fezolinetant for treatment of moderate-to-severe vasomotor symptoms associated with menopause (SKYLIGHT 1): A phase 3 randomised controlled study. Lancet, 2023, 401(10382), 1091-1102. doi: 10.1016/S0140-6736(23)00085-5 PMID: 36924778
  101. Skorupskaite, K.; George, J.T.; Veldhuis, J.D.; Millar, R.P.; Anderson, R.A. Kisspeptin and neurokinin B interactions in modulating gonadotropin secretion in women with polycystic ovary syndrome. Hum. Reprod., 2020, 35(6), 1421-1431. doi: 10.1093/humrep/deaa104 PMID: 32510130
  102. Trower, M.; Anderson, R.A.; Ballantyne, E.; Joffe, H.; Kerr, M.; Pawsey, S. Effects of NT-814, a dual neurokinin 1 and 3 receptor antagonist, on vasomotor symptoms in postmenopausal women: A placebo-controlled, randomized trial. Menopause, 2020, 27(5), 498-505. doi: 10.1097/GME.0000000000001500 PMID: 32068688
  103. Depypere, H.; Timmerman, D.; Donders, G.; Sieprath, P.; Ramael, S.; Combalbert, J.; Hoveyda, H.R.; Fraser, G.L. Treatment of menopausal vasomotor symptoms with fezolinetant, a neurokinin 3 receptor antagonist: A phase 2a trial. J. Clin. Endocrinol. Metab., 2019, 104(12), 5893-5905. doi: 10.1210/jc.2019-00677 PMID: 31415087
  104. Kim, H.J.J.; Dickie, S.A.; Laprairie, R.B. Estradiol-dependent hypocretinergic/orexinergic behaviors throughout the estrous cycle. Psychopharmacology, 2023, 240(1), 15-25. doi: 10.1007/s00213-022-06296-1 PMID: 36571628
  105. Zhu, Y.; Miwa, Y.; Yamanaka, A.; Yada, T.; Shibahara, M.; Abe, Y.; Sakurai, T.; Goto, K. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J. Pharmacol. Sci., 2003, 92(3), 259-266. doi: 10.1254/jphs.92.259 PMID: 12890892
  106. Gorojankina, T.; Grébert, D.; Salesse, R.; Tanfin, Z.; Caillol, M. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: Multiple orexin signalling pathways. Regul. Pept., 2007, 141(1-3), 73-85. doi: 10.1016/j.regpep.2006.12.012 PMID: 17292491
  107. Kohlmeier, K.A.; Watanabe, S.; Tyler, C.J.; Burlet, S.; Leonard, C.S. Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: Noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels. J. Neurophysiol., 2008, 100(4), 2265-2281. doi: 10.1152/jn.01388.2007 PMID: 18667550
  108. Larsson, K.P.; Peltonen, H.M.; Bart, G.; Louhivuori, L.M.; Penttonen, A.; Antikainen, M.; Kukkonen, J.P.; Åkerman, K.E.O. Orexin-A-induced Ca2+ entry: Evidence for involvement of trpc channels and protein kinase C regulation. J. Biol. Chem., 2005, 280(3), 1771-1781. doi: 10.1074/jbc.M406073200 PMID: 15537648
  109. Uramura, K.; Funahashi, H.; Muroya, S.; Shioda, S.; Takigawa, M.; Yada, T. Orexin-a activates phospholipase C- and protein kinase C-mediated Ca2+ signaling in dopamine neurons of the ventral tegmental area. Neuroreport, 2001, 12(9), 1885-1889. doi: 10.1097/00001756-200107030-00024 PMID: 11435917
  110. Sasson, R.; Dearth, R.K.; White, R.S.; Chappell, P.E.; Mellon, P.L.; Orexin, A. Orexin A induces GnRH gene expression and secretion from GT1-7 hypothalamic GnRH neurons. Neuroendocrinology, 2006, 84(6), 353-363. doi: 10.1159/000098333 PMID: 17192702
  111. Silveyra, P.; Catalano, P.N.; Lux-Lantos, V.; Libertun, C. Impact of proestrous milieu on expression of orexin receptors and prepro-orexin in rat hypothalamus and hypophysis: Actions of Cetrorelix and Nembutal. Am. J. Physiol. Endocrinol. Metab., 2007, 292(3), E820-E828. doi: 10.1152/ajpendo.00467.2006 PMID: 17122088
  112. Basini, G.; Ciccimarra, R.; Bussolati, S.; Grolli, S.; Ragionieri, L.; Ravanetti, F.; Botti, M.; Gazza, F.; Cacchioli, A.; Di Lecce, R.; Cantoni, A.M.; Grasselli, F. Orexin A in swine corpus luteum. Domest. Anim. Endocrinol., 2018, 64, 38-48. doi: 10.1016/j.domaniend.2018.04.001 PMID: 29733985
  113. Dobrzyn, K.; Szeszko, K.; Kiezun, M.; Kisielewska, K.; Rytelewska, E.; Gudelska, M.; Wyrebek, J.; Bors, K.; Kaminski, T.; Smolinska, N. In vitro effect of orexin A on the transcriptomic profile of the endometrium during early pregnancy in pigs. Anim. Reprod. Sci., 2019, 200, 31-42. doi: 10.1016/j.anireprosci.2018.11.008 PMID: 30545750

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024