Structural Insights of PD-1/PD-L1 Axis: An In silico Approach


如何引用文章

全文:

详细

Background:Interaction of PD-1 protein (present on immune T-cell) with its ligand PD-L1 (over-expressed on cancerous cell) makes the cancerous cell survive and thrive. The association of PD-1/PD-L1 represents a classical protein-protein interaction (PPI), where receptor and ligand binding through a large flat surface. Blocking the PD-1/PDL-1 complex formation can restore the normal immune mechanism, thereby destroying cancerous cells. However, the PD-1/PDL1 interactions are only partially characterized.

Objective:We aim to comprehend the time-dependent behavior of PD-1 upon its binding with PD-L1.

Methods:The current work focuses on a molecular dynamics simulation (MDs) simulation study of apo and ligand bound PD-1.

Results:Our simulation reveals the flexible nature of the PD-1, both in apo and bound form. Moreover, the current study also differentiates the type of strong and weak interactions which could be targeted to overcome the complex formation.

Conclusion:The current article could provide a valuable structural insight about the target protein (PD-1) and its ligand (PD-L1) which could open new opportunities in developing small molecule inhibitors (SMIs) targeting either PD-1 or PD-L1.

作者简介

Shishir Rohit

Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology

Email: info@benthamscience.net

Mehul Patel

Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology

编辑信件的主要联系方式.
Email: info@benthamscience.net

Yogesh Jagtap

Department of Drug Discovery and Development, Kashiv BioSciences Pvt

Email: info@benthamscience.net

Umang Shah

Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology

Email: info@benthamscience.net

Ashish Patel

Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology

Email: info@benthamscience.net

Swayamprakash Patel

Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology

Email: info@benthamscience.net

Nilay Solanki

Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology

Email: info@benthamscience.net

参考

  1. Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H., Jr A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol., 2020, 27(12), 87-97. doi: 10.3747/co.27.5223 PMID: 32368178
  2. Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264. doi: 10.1038/nrc3239 PMID: 22437870
  3. Hoos, A. Development of immuno-oncology drugs — from CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov., 2016, 15(4), 235-247. doi: 10.1038/nrd.2015.35 PMID: 26965203
  4. Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol., 2016, 13(5), 273-290. doi: 10.1038/nrclinonc.2016.25 PMID: 26977780
  5. Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895. doi: 10.1002/j.1460-2075.1992.tb05481.x PMID: 1396582
  6. Liu, C.; Seeram, N.P.; Ma, H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: A review. Cancer Cell Int., 2021, 21(1), 239. doi: 10.1186/s12935-021-01946-4 PMID: 33906641
  7. Sasikumar, P.G.; Ramachandra, M. Small molecule agents targeting PD-1 checkpoint pathway for cancer immunotherapy: Mechanisms of action and other considerations for their advanced development. Front. Immunol., 2022, 13, 752065. doi: 10.3389/fimmu.2022.752065 PMID: 35585982
  8. Shaabani, S.; Huizinga, H.P.S.; Butera, R.; Kouchi, A.; Guzik, K.; Mularz, M.K.; Holak, T.A.; Dömling, A. A patent review on PD-1/PD-L1 antagonists: Small molecules, peptides, and macrocycles (2015-2018). Expert Opin. Ther. Pat., 2018, 28(9), 665-678. doi: 10.1080/13543776.2018.1512706 PMID: 30107136
  9. Muszak, D.; Surmiak, E.; Plewka, J.; Mularz, M.K.; Krol, K.J.; Musielak, B.; Sala, D.; Kitel, R.; Stec, M.; Weglarczyk, K.; Siedlar, M.; Dömling, A.; Skalniak, L.; Holak, T.A. Terphenyl-based small-molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein–protein interaction. J. Med. Chem., 2021, 64(15), 11614-11636. doi: 10.1021/acs.jmedchem.1c00957 PMID: 34313116
  10. Magid, A.F.A. Inhibitors of the PD-1/PD-L1 pathway can mobilize the immune system: An innovative potential therapy for cancer and chronic infections. ACS Med. Chem. Lett., 2015, 6(5), 489-490.
  11. Musielak, B.; Kocik, J.; Skalniak, L.; Mularz, M.K.; Sala, D.; Czub, M.; Stec, M.; Siedlar, M.; Holak, T.A.; Plewka, J. CA-170 – A potent small-molecule PD-L1 inhibitor or not? Molecules, 2019, 24(15), 2804. doi: 10.3390/molecules24152804 PMID: 31374878
  12. Lin, D.Y.; Tanaka, Y.; Iwasaki, M.; Gittis, A.G.; Su, H.P.; Mikami, B.; Okazaki, T.; Honjo, T.; Minato, N.; Garboczi, D.N. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc. Natl. Acad. Sci., 2008, 105(8), 3011-3016. doi: 10.1073/pnas.0712278105 PMID: 18287011
  13. Cheng, X.; Veverka, V.; Radhakrishnan, A.; Waters, L.C.; Muskett, F.W.; Morgan, S.H.; Huo, J.; Yu, C.; Evans, E.J.; Leslie, A.J.; Griffiths, M.; Stubberfield, C.; Griffin, R.; Henry, A.J.; Jansson, A.; Ladbury, J.E.; Ikemizu, S.; Carr, M.D.; Davis, S.J. Structure and interactions of the human programmed cell death 1 receptor. J. Biol. Chem., 2013, 288(17), 11771-11785. doi: 10.1074/jbc.M112.448126 PMID: 23417675
  14. Zak, K.M.; Grudnik, P.; Magiera, K.; Dömling, A.; Dubin, G.; Holak, T.A. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure, 2017, 25(8), 1163-1174. doi: 10.1016/j.str.2017.06.011 PMID: 28768162
  15. Zak, K.M.; Kitel, R.; Przetocka, S.; Golik, P.; Guzik, K.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure, 2015, 23(12), 2341-2348. doi: 10.1016/j.str.2015.09.010 PMID: 26602187
  16. Guo, W.; Wisniewski, J.A.; Ji, H. Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg. Med. Chem. Lett., 2014, 24(11), 2546-2554. doi: 10.1016/j.bmcl.2014.03.095 PMID: 24751445
  17. Koes, D.; Khoury, K.; Huang, Y.; Wang, W.; Bista, M.; Popowicz, G.M.; Wolf, S.; Holak, T.A.; Dömling, A.; Camacho, C.J. Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists. PLoS One, 2012, 7(3), e32839. doi: 10.1371/journal.pone.0032839 PMID: 22427896
  18. Mittal, L.; Srivastava, M.; Kumari, A.; Tonk, R.K.; Awasthi, A.; Asthana, S. Interplay among structural stability, plasticity, and energetics determined by conformational attuning of flexible loops in PD-1. J. Chem. Inf. Model., 2021, 61(1), 358-384. doi: 10.1021/acs.jcim.0c01080 PMID: 33433201
  19. Ahmed, M.; Barakat, K. The too many faces of PD-L1: A comprehensive conformational analysis study. Biochemistry, 2017, 56(40), 5428-5439.
  20. Viricel, C.; Ahmed, M.; Barakat, K. Human PD-1 binds differently to its human ligands: A comprehensive modeling study. J. Mol. Graph. Model., 2015, 57, 131-142. doi: 10.1016/j.jmgm.2015.01.015 PMID: 25723350
  21. Du, J.; Qin, Y.; Wu, Y.; Zhao, W.; Zhai, W.; Qi, Y.; Wang, C.; Gao, Y. The design of high affinity human PD-1 mutants by using molecular dynamics simulations (MD). Cell Commun. Signal., 2018, 16(1), 25. doi: 10.1186/s12964-018-0239-9 PMID: 29879980
  22. Mehler, E.L. Self-consistent, free energy based approximation to calculate pH dependent electrostatic effects in proteins. J. Phys. Chem., 1996, 100(39), 16006-16018. doi: 10.1021/jp9537926
  23. Mehler, E.L.; Guarnieri, F. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys. J., 1999, 77(1), 3-22. doi: 10.1016/S0006-3495(99)76868-2 PMID: 10388736
  24. GROMACS 2019.6 Source code. 2020. Available from: https://zenodo.org/records/3685922
  25. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713. doi: 10.1021/acs.jctc.5b00255 PMID: 26574453
  26. Onufriev, A.V.; Izadi, S. Water models for biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(2), e1347. doi: 10.1002/wcms.1347
  27. Harrach, M.F.; Drossel, B. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J. Chem. Phys., 2014, 140(17), 174501. doi: 10.1063/1.4872239 PMID: 24811640
  28. Chinnasamy, K.; Saravanan, M.; Poomani, K. Evaluation of binding and antagonism/downregulation of brilanestrant molecule in estrogen receptor-α via quantum mechanics/molecular mechanics, molecular dynamics and binding free energy calculations. J. Biomol. Struct. Dyn., 2020, 38(1), 219-235. doi: 10.1080/07391102.2019.1574605 PMID: 31038398
  29. Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690. doi: 10.1063/1.448118
  30. Cuendet, M.A.; van Gunsteren, W.F. On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm. J. Chem. Phys., 2007, 127(18), 184102. doi: 10.1063/1.2779878 PMID: 18020625
  31. Bekker, H.; Dijkstra, E.J.; Renardus, M.K.R.; Berendsen, H.J.C. An efficient, box shape independent non-bonded force and virial algorithm for molecular dynamics. Mol. Simul., 1995, 14(3), 137-151. doi: 10.1080/08927029508022012
  32. Guenot, J.; Kollman, P.A. Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation. J. Comput. Chem., 1993, 14(3), 295-311. doi: 10.1002/jcc.540140306
  33. Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593. doi: 10.1063/1.470117
  34. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
  35. Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H
  36. Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput., 2008, 4(1), 116-122. doi: 10.1021/ct700200b PMID: 26619985
  37. Mehta, C.C.; Rohit, S.; Patel, S.; Bhatt, H.G. New molecular insights for 4 H -1,2,4-triazole derivatives as inhibitors of tankyrase and Wnt-signaling antagonist: A molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2023, 41(22), 13496-13508. doi: 10.1080/07391102.2023.2175376 PMID: 36755438
  38. Grace Home. Available from: https://plasma-gate.weizmann.ac.il/Grace/ (Accessed on: 2024-02-16).
  39. Hernández, P.G.; Hildebrand, P.W. Mdciao: Accessible analysis and visualization of molecular dynamics simulation data. bioRxiv, 2022, 2022.07. doi: 10.1101/2022.07.15.500163
  40. Carugo, O.; Pongor, S. A normalized root-mean-spuare distance for comparing protein three-dimensional structures. Protein Sci., 2001, 10(7), 1470-1473. doi: 10.1110/ps.690101 PMID: 11420449
  41. Carugo, O. Statistical validation of the root-mean-square-distance, a measure of protein structural proximity. Protein Eng. Des. Sel., 2007, 20(1), 33-37. doi: 10.1093/protein/gzl051 PMID: 17218333
  42. Damm, K.L.; Carlson, H.A. Gaussian-weighted RMSD superposition of proteins: A structural comparison for flexible proteins and predicted protein structures. Biophys. J., 2006, 90(12), 4558-4573. doi: 10.1529/biophysj.105.066654 PMID: 16565070
  43. Kufareva, I.; Abagyan, R. Methods of protein structure comparison. Methods Mol. Biol., 2011, 857, 231-257. doi: 10.1007/978-1-61779-588-6_10 PMID: 22323224
  44. Fuglebakk, E.; Echave, J.; Reuter, N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics, 2012, 28(19), 2431-2440. doi: 10.1093/bioinformatics/bts445 PMID: 22796957
  45. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J Mol Graph, 1996, 14(1), 33-38. doi: 10.1016/0263-7855(96)00018-5
  46. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22(12), 2577-2637. doi: 10.1002/bip.360221211 PMID: 6667333
  47. Kim, R.; Choi, C.Y. A linear function for the approximation of accessible surface area of proteins. Protein Pept. Lett., 2006, 13(6), 549-553. doi: 10.2174/092986606777145869 PMID: 16842107
  48. Ali, S.; Hassan, M.; Islam, A.; Ahmad, F. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr. Protein Pept. Sci., 2014, 15(5), 456-476. doi: 10.2174/1389203715666140327114232 PMID: 24678666
  49. Lu, S.; Wagaman, A.S. On methods for determining solvent accessible surface area for proteins in their unfolded state. BMC Res. Notes, 2014, 7(1), 602. doi: 10.1186/1756-0500-7-602 PMID: 25187400
  50. How to calculate solvent accessible surface (SASA)? Available from: https://www.researchgate.net/post/How-to-calculate-solvent-accessible-surface-SASA (Accessed on: 2024-02-16).
  51. Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol., 2008, 42(4), 623-628. doi: 10.1134/S0026893308040195 PMID: 18856071
  52. Ivankov, D.N.; Finkelstein, A.V. Prediction of protein folding rates from the amino acid sequence-predicted secondary structure. Proc. Natl. Acad. Sci. USA, 2004, 101(24), 8942-8944. doi: 10.1073/pnas.0402659101 PMID: 15184682
  53. Finkelstein, A.V.; Galzitskaya, O.V. Physics of protein folding. Phys. Life Rev., 2004, 1(1), 23-56. doi: 10.1016/j.plrev.2004.03.001
  54. Tsai, J.; Taylor, R.; Chothia, C.; Gerstein, M. The packing density in proteins. J. Molecul. Biol., 1999, 290(1), 253-266. doi: 10.1006/jmbi.1999.2829
  55. Peng, J.; Wang, W.; Yu, Y.; Gu, H.; Huang, X. Clustering algorithms to analyze molecular dynamics simulation trajectories for complex chemical and biological systems. Chin. J. Chem. Phys., 2018, 31(4), 404-420. doi: 10.1063/1674-0068/31/cjcp1806147
  56. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.T. A review of clustering techniques and developments. Neurocomputing, 2017, 267, 664-681. doi: 10.1016/j.neucom.2017.06.053
  57. Abramyan, T.M.; Snyder, J.A.; Thyparambil, A.A.; Stuart, S.J.; Latour, R.A. Cluster analysis of molecular simulation trajectories for systems where both conformation and orientation of the sampled states are important. J. Comput. Chem., 2016, 37(21), 1973-1982. doi: 10.1002/jcc.24416 PMID: 27292100
  58. Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53(14), 5061-5084. doi: 10.1021/jm100112j PMID: 20345171
  59. Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 1977, 112(3), 535-542. doi: 10.1016/S0022-2836(77)80200-3 PMID: 875032
  60. Gilson, M.K.; Zhou, H.X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct., 2007, 36(1), 21-42. doi: 10.1146/annurev.biophys.36.040306.132550 PMID: 17201676
  61. Almahmoud, S.; Zhong, H.A. Molecular modeling studies on the binding mode of the PD-1/PD-L1 complex inhibitors. Int. J. Mol. Sci., 2019, 20(18), 4654. doi: 10.3390/ijms20184654 PMID: 31546905
  62. Sartori, G.R.; Albuquerque, A. de O.; Costa, S.A.H.; Andrade, L.M.; Almeida, D. da S.; Gaieta, E.M.; Sampaio, J.V.; Albuquerque, V. In silico mapping of the dynamic interactions and structure-activity relationship of flavonoid compounds against the immune checkpoint programmed-cell death 1 pathway. Front. Drug. Discov., 2022, 2, 1032587.
  63. Hubbard, R.E.; Haider, K.M. Hydrogen bonds in proteins: Role and strength. In: Encyclopedia of Life Sciences; John Wiley & Sons, Ltd, 2010. doi: 10.1002/9780470015902.a0003011.pub2
  64. Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240. doi: 10.1126/sciadv.1501240 PMID: 27051863
  65. Jiang, L.; Lai, L. CH...O hydrogen bonds at protein-protein interfaces. J. Biol. Chem., 2002, 277(40), 37732-37740. doi: 10.1074/jbc.M204514200 PMID: 12119293
  66. Levy, Y.; Onuchic, J.N. Water and proteins: A love–hate relationship. Proc. Natl. Acad. Sci., 2004, 101(10), 3325-3326. doi: 10.1073/pnas.0400157101 PMID: 14993602
  67. Martin, J.; Frezza, E. A dynamical view of protein-protein complexes: Studies by molecular dynamics simulations. Front. Mol. Biosci., 2022, 9, 970109. doi: 10.3389/fmolb.2022.970109 PMID: 36275619
  68. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935. doi: 10.1063/1.445869
  69. Laage, D.; Elsaesser, T.; Hynes, J.T. Water dynamics in the hydration shells of biomolecules. Chem. Rev., 2017, 117(16), 10694-10725. doi: 10.1021/acs.chemrev.6b00765 PMID: 28248491
  70. Ahmad, M.; Gu, W.; Geyer, T.; Helms, V. Adhesive water networks facilitate binding of protein interfaces. Nat. Commun., 2011, 2(1), 261. doi: 10.1038/ncomms1258 PMID: 21448160
  71. Huggins, D.J.; Marsh, M.; Payne, M.C. Thermodynamic properties of water molecules at a protein–protein interaction surface. J. Chem. Theory Comput., 2011, 7(11), 3514-3522. doi: 10.1021/ct200465z PMID: 24554921
  72. Papoian, G.A.; Ulander, J.; Wolynes, P.G. Role of water mediated interactions in protein-protein recognition landscapes. J. Am. Chem. Soc., 2003, 125(30), 9170-9178. doi: 10.1021/ja034729u PMID: 15369374
  73. Ban, X.; Lahiri, P.; Dhoble, A.S.; Li, D.; Gu, Z.; Li, C.; Cheng, L.; Hong, Y.; Li, Z.; Kaustubh, B. Evolutionary stability of salt bridges hints its contribution to stability of proteins. Comput. Struct. Biotechnol. J., 2019, 17, 895-903. doi: 10.1016/j.csbj.2019.06.022 PMID: 31333816
  74. Donald, J.E.; Kulp, D.W.; DeGrado, W.F. Salt bridges: Geometrically specific, designable interactions. Proteins, 2011, 79(3), 898-915. doi: 10.1002/prot.22927 PMID: 21287621
  75. Gribenko, A.V.; Makhatadze, G.I. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins. J. Mol. Biol., 2007, 366(3), 842-856. doi: 10.1016/j.jmb.2006.11.061 PMID: 17188709
  76. Shao, J.; Kuiper, B.P.; Thunnissen, A.M.W.H.; Cool, R.H.; Zhou, L.; Huang, C.; Dijkstra, B.W.; Broos, J. The role of tryptophan in π interactions in proteins: An experimental approach. J. Am. Chem. Soc., 2022, 144(30), 13815-13822. doi: 10.1021/jacs.2c04986 PMID: 35868012
  77. Dougherty, D.A. Cation-pi interactions involving aromatic amino acids. J. Nutr., 2007, 137(6), 1504S-1508S. doi: 10.1093/jn/137.6.1504S PMID: 17513416
  78. Makwana, K.M.; Mahalakshmi, R. Implications of aromatic–aromatic interactions: From protein structures to peptide models. Protein Sci., 2015, 24(12), 1920-1933. doi: 10.1002/pro.2814 PMID: 26402741
  79. Vaideeswaran, S.; Ramaiah, S. Investigations on the role of π–π interactions and π–π networks in eNOS and nNOS proteins. Bioorg. Chem., 2013, 49, 16-23. doi: 10.1016/j.bioorg.2013.06.005 PMID: 23845761

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024