Carboxylic Group Functionalized Carbon Quantum Dots inhibit Hen Egg White Lysozyme Amyloidogenesis, leading to the Formation of Spherical Aggregates with Reduced Toxicity and ROS Generation


如何引用文章

全文:

详细

Introduction::Proteinopathies are a group of diseases where the protein structure has been altered. These alterations are linked to the production of amyloids, which are persistent, organized clumps of protein molecules through inter-molecular interactions. Several disorders, including Alzheimer's and Parkinson's, have been related to the presence of amyloids. Highly ordered beta sheets or beta folds are characteristic of amyloids; these structures can further self- -assemble into stable fibrils.

Method::Protein aggregation is caused by a wide variety of environmental and experimental factors, including mutations, high pH, high temperature, and chemical modification. Despite several efforts, a cure for amyloidosis has yet to be found. Due to its advantageous semi-conducting characteristics, unique optical features, high surface area-to-volume ratio, biocompatibility, etc., carbon quantum dots (CQDs) have lately emerged as key instruments for a wide range of biomedical applications. To this end, we have investigated the effect of CQDs with a carboxyl group on their surface (CQD-CA) on the in vitro amyloidogenesis of hen egg white lysozyme (HEWL).

Result::By generating a stable compound that is resistant to fibrillation, our findings show that CQD-CA can suppress amyloid and disaggregate HEWL. In addition, CQD-CA caused the creation of non-toxic spherical aggregates, which generated much less reactive oxygen species (ROS).

Conclusion::Overall, our results show that more research into amyloidosis treatments, including surface functionalized CQDs, is warranted.

作者简介

M.P. Prabhu

Department of Biotechnology and Medical Engineering,, National Institute of Technology Rourkela

Email: info@benthamscience.net

Shreya Chrungoo

Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela

Email: info@benthamscience.net

Nandini Sarkar

Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Arosio, P.; Knowles, T.P.J.; Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys., 2015, 17(12), 7606-7618. doi: 10.1039/C4CP05563B PMID: 25719972
  2. Olzscha, H.; Schermann, S.M.; Woerner, A.C.; Pinkert, S.; Hecht, M.H.; Tartaglia, G.G.; Vendruscolo, M.; Hayer-Hartl, M.; Hartl, F.U.; Vabulas, R.M. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell, 2011, 144(1), 67-78. doi: 10.1016/j.cell.2010.11.050 PMID: 21215370
  3. Ferrone, F. Analysis of protein aggregation kinetics. Methods in enzymology; Academic Press: Massachusetts, United States, 1999, pp. 256-274.
  4. Chatterjee, R.; Kolli, V.; Sarkar, N. Trehalose and magnesium chloride exert a common anti-amyloidogenic effect towards hen egg white lysozyme. Protein J., 2017, 36(2), 138-146. doi: 10.1007/s10930-017-9705-2 PMID: 28299593
  5. Javed, M.; Saqib, A.N.S.; Ata-ur-Rehman; Ali, B.; Faizan, M.; Anang, D.A.; Iqbal, Z.; Abbas, S.M. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim. Acta, 2019, 297, 250-257. doi: 10.1016/j.electacta.2018.11.167
  6. Liu, X.; Pang, J.; Xu, F.; Zhang, X. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci. Rep., 2016, 6(1), 31100. doi: 10.1038/srep31100 PMID: 27492748
  7. Chandra, S.; Pathan, S.H.; Mitra, S.; Modha, B.H.; Goswami, A.; Pramanik, P. Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Advances, 2012, 2(9), 3602-3606. doi: 10.1039/c2ra00030j
  8. Pires, N.R.; Santos, C.M.W.; Sousa, R.R.; Paula, R.C.M.; Cunha, P.L.R.; Feitosa, J.P.A. Novel and fast microwave-assisted synthesis of carbon quantum dots from raw cashew gum. J. Braz. Chem. Soc., 2015, 26, 1274-1282. doi: 10.5935/0103-5053.20150094
  9. S, T.; D, R.S. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci., 2016, 390, 435-443. doi: 10.1016/j.apsusc.2016.08.106
  10. Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry, 2014, 20(17), 4993-4999. doi: 10.1002/chem.201304869 PMID: 24623706
  11. Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012, 33(13), 3604-3613. doi: 10.1016/j.biomaterials.2012.01.052 PMID: 22341214
  12. Zhao, Y.; Zhang, Y.; Liu, X.; Kong, H.; Wang, Y.; Qin, G.; Cao, P.; Song, X.; Yan, X.; Wang, Q.; Qu, H. Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Sci. Rep., 2017, 7(1), 4452. doi: 10.1038/s41598-017-04073-1 PMID: 28667269
  13. Zhu, C.; Zhai, J.; Dong, S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. (Camb.), 2012, 48(75), 9367-9369. doi: 10.1039/c2cc33844k PMID: 22911246
  14. Zhang, B.; Liu, C.; Liu, Y. A novel one-step approach to synthesize fluorescent carbon nanoparticles. Eur. J. Inorg. Chem., 2010, 2010(28), 4411-4414. doi: 10.1002/ejic.201000622
  15. Xu, Y.; Wu, M.; Liu, Y.; Feng, X.Z.; Yin, X.B.; He, X.W.; Zhang, Y.K. Nitrogen-doped carbon dots: A facile and general preparation method, photoluminescence investigation, and imaging applications. Chemistry, 2013, 19(7), 2276-2283. doi: 10.1002/chem.201203641 PMID: 23322649
  16. Liu, Y.; Zhao, Y.; Zhang, Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens. Actuators B Chem., 2014, 196, 647-652. doi: 10.1016/j.snb.2014.02.053
  17. Sachdev, A.; Gopinath, P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst (Lond.), 2015, 140(12), 4260-4269. doi: 10.1039/C5AN00454C PMID: 25927267
  18. Kumar, A.; Chowdhuri, A.R.; Laha, D.; Mahto, T.K.; Karmakar, P.; Sahu, S.K. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens. Actuators B Chem., 2017, 242, 679-686. doi: 10.1016/j.snb.2016.11.109
  19. Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett., 2012, 66(1), 222-224. doi: 10.1016/j.matlet.2011.08.081
  20. Sun, D.; Ban, R.; Zhang, P.H.; Wu, G.H.; Zhang, J.R.; Zhu, J.J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon, 2013, 64, 424-434. doi: 10.1016/j.carbon.2013.07.095
  21. Chunduri, L.A.A.; Kurdekar, A.; Patnaik, S.; Dev, B.V.; Rattan, T.M.; Kamisetti, V. Carbon quantum dots from coconut husk: Evaluation for antioxidant and cytotoxic activity. Materials Focus, 2016, 5(1), 55-61. doi: 10.1166/mat.2016.1289
  22. Sarkar, N.; Kumar Dubey, V. Protein nano-fibrillar structure and associated diseases. Curr. Proteomics, 2010, 7(2), 116-120. doi: 10.2174/157016410791330516
  23. Bloch, D.N.; Ben Zichri, S.; Kolusheva, S.; Jelinek, R. Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide. Nanoscale Adv., 2020, 2(12), 5866-5873. doi: 10.1039/D0NA00870B PMID: 36133854
  24. Li, S.; Wang, L.; Chusuei, C.C.; Suarez, V.M.; Blackwelder, P.L.; Micic, M.; Orbulescu, J.; Leblanc, R.M. Nontoxic carbon dots potently inhibit human insulin fibrillation. Chem. Mater., 2015, 27(5), 1764-1771. doi: 10.1021/cm504572b
  25. Kuruvilla, S.J.; Li, S.; Sansalone, L.; Fortes, B.; Zheng, I.; Blackwelder, P.; Pumilia, C.; Micic, M.; Orbulescu, J.; Leblanc, R.M. Dihydrolipoic acid conjugated carbon dots accelerate human insulin fibrillation. J. Parkinsons Dis. Alzheimers Dis., 2015, 2(1), 1.
  26. Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. Carbon dots: Surface engineering and applications. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(35), 5772-5788. doi: 10.1039/C6TB00976J PMID: 32263748
  27. Kalhor, H.R.; Yahyazadeh, A. Investigating the effects of amino acid-based surface modification of carbon nanoparticles on the kinetics of insulin amyloid formation. Colloids Surf. B Biointerfaces, 2019, 176, 471-479. doi: 10.1016/j.colsurfb.2019.01.033 PMID: 30684903
  28. Wu, J.A.; Chen, Y.C.; Tu, L.H. Dopamine-conjugated carbon dots inhibit human calcitonin fibrillation. Nanomaterials (Basel), 2021, 11(9), 2242. doi: 10.3390/nano11092242 PMID: 34578556
  29. Zaman, M.; Ahmad, E.; Qadeer, A.; Rabbani, G.; Khan, R.H. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomedicine, 2014, 9, 899-912. PMID: 24611007
  30. Prabhu, M.P.T.; Sarkar, N. Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophys. Chem., 2022, 280, 106714. doi: 10.1016/j.bpc.2021.106714 PMID: 34749221
  31. Ulicna, K.; Bednarikova, Z.; Hsu, W.T.; Holztragerova, M.; Wu, J.W.; Hamulakova, S.; Wang, S.S.S.; Gazova, Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf. B Biointerfaces, 2018, 166, 108-118. doi: 10.1016/j.colsurfb.2018.03.010 PMID: 29550545
  32. Sulatsky, M.I.; Sulatskaya, A.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion, 2020, 14(1), 67-75. doi: 10.1080/19336896.2020.1720487 PMID: 32008441
  33. Antosova, A.; Chelli, B.; Bystrenova, E.; Siposova, K.; Valle, F.; Imrich, J.; Vilkova, M.; Kristian, P.; Biscarini, F.; Gazova, Z. Structure-activity relationship of acridine derivatives to amyloid aggregation of lysozyme. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(4), 465-474. doi: 10.1016/j.bbagen.2011.01.007 PMID: 21276838
  34. Bourassa, P.; Kanakis, C.D.; Tarantilis, P.; Pollissiou, M.G.; Tajmir-Riahi, H.A. Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B, 2010, 114(9), 3348-3354. doi: 10.1021/jp9115996 PMID: 20148537
  35. Zhang, C.; Gao, C.; Mu, J.; Qiu, Z.; Li, L. Spectroscopic studies on unfolding processes of apo-neuroglobin induced by guanidine hydrochloride and urea. BioMed Res. Int., 2013, 2013, 1-7. doi: 10.1155/2013/349542 PMID: 23984347
  36. Wang, B.B.; Wang, Y.Y.; Zhang, X.Y.; Xu, Z.Q.; Jiang, P.; Jiang, F.L.; Liu, Y. Bifunctional carbon dots for cell imaging and inhibition of human insulin fibrillation in the whole aggregation process. Int. J. Biol. Macromol., 2020, 147, 453-462. doi: 10.1016/j.ijbiomac.2019.12.267 PMID: 31923519
  37. Han, Q.; Cai, S.; Yang, L.; Wang, X.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl. Mater. Interfaces, 2017, 9(25), 21116-21123. doi: 10.1021/acsami.7b03816 PMID: 28613069
  38. Seraghni, N.; Belattar, S.; Mameri, Y.; Debbache, N.; Sehili, T. Fe (III)-citrate-complex-induced photooxidation of 3-methylphenol in aqueous solution. Int. J. Photoenergy, 2012, 2012, 1-10. doi: 10.1155/2012/630425
  39. Pimpang, P.; Sumang, R.; Choopun, S. Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2018, 45(5), 2005.
  40. Clogston, J.D.; Patri, A.K. Zeta potential measurement.Characterization of Nanoparticles intended for drug delivery: Methods in Molecular Biology; McNeil, S., Ed.; Humana Press: New Jersey, 2010, pp. 63-70.
  41. Ahlawat, J.; Narayan, M. Multifunctional carbon quantum dots prevent soluble-to-toxic transformation of amyloid and oxidative stress. ACS Sustain. Chem. Eng., 2022, 10(14), 4610-4622. doi: 10.1021/acssuschemeng.1c08638
  42. Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 2008, 89(5), 392-400. doi: 10.1002/bip.20853 PMID: 17896349
  43. Maity, S.; Kumar, R.; Maity, S.K.; Jana, P.; Bera, S.; Haldar, D. Synthesis and study of 2-acetyl amino-3-4-(2-amino-5-sulfo-phenylazo)-phenyl-propionic acid: A new class of inhibitor for hen egg white lysozyme amyloidogenesis. Med. Chem. Comm., 2013, 4(3), 530-536. doi: 10.1039/c2md20236k
  44. Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J.M.; Raussens, V. ATR-FTIR: A "rejuvenated" tool to investigate amyloid proteins. Biochim. Biophys. Acta Biomembr., 2013, 1828(10), 2328-2338. doi: 10.1016/j.bbamem.2013.04.012
  45. Pace, C.N.; Scholtz, J.M. Measuring the conformational stability of a protein. In Protein structure: A practical approach; Creighton, T.E., Ed.; Oxford University Press: Oxford, 1997, pp. 299-321. doi: 10.1093/oso/9780199636198.003.0012
  46. Fersht, A.R. A kinetically significant intermediate in the folding of barnase. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14121-14126. doi: 10.1073/pnas.260502597 PMID: 11114199
  47. Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950. doi: 10.1152/physrev.00026.2013 PMID: 24987008
  48. Getachew, G.; Korupalli, C.; Rasal, A.S.; Chang, J.Y. ROS generation/scavenging modulation of carbon dots as phototherapeutic candidates and peroxidase mimetics to integrate with polydopamine nanoparticles/GOx towards cooperative cancer therapy. Compos., Part B Eng., 2021, 226, 109364. doi: 10.1016/j.compositesb.2021.109364

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024