Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations
- Authors: Wang J.1, Chen Y.2, Xiao Z.3, Liu X.4, Liu C.1, Huang K.5, Chen H.5
-
Affiliations:
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technolog
- ISA Wenhua Wuhan High School, Wuhan Economics & Technological Development Zone
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
- Issue: Vol 25, No 7 (2024)
- Pages: 553-566
- Section: Life Sciences
- URL: https://rjsvd.com/1389-2037/article/view/645678
- DOI: https://doi.org/10.2174/0113892037296216240301074253
- ID: 645678
Cite item
Full Text
Abstract
Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.
About the authors
Jiao Wang
Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology
Email: info@benthamscience.net
Yuchen Chen
Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technolog
Author for correspondence.
Email: info@benthamscience.net
Zixuan Xiao
ISA Wenhua Wuhan High School, Wuhan Economics & Technological Development Zone
Email: info@benthamscience.net
Xikai Liu
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
Email: info@benthamscience.net
Chengyu Liu
Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology
Email: info@benthamscience.net
Kun Huang
Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
Email: info@benthamscience.net
Hong Chen
Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Pantoja, C.F.; Zweckstetter, M.; Rezaei-Ghaleh, N. Dynamical component exchange in a model phase separating system: An NMR-based approach. Phys. Chem. Chem. Phys., 2022, 24(10), 6169-6175. doi: 10.1039/D2CP00042C PMID: 35229098
- Mudogo, C.N.; Falke, S.; Brognaro, H.; Duszenko, M.; Betzel, C. Protein phase separation and determinants of in cell crystallization. Traffic, 2020, 21(2), 220-230. doi: 10.1111/tra.12711 PMID: 31664760
- Bloom, K.; Kolbin, D. Mechanisms of DNA mobilization and sequestration. Genes, 2022, 13(2), 352. doi: 10.3390/genes13020352 PMID: 35205396
- Comert, F.; Dubin, P.L. Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems. Adv. Colloid Interface Sci., 2017, 239, 213-217. doi: 10.1016/j.cis.2016.08.005 PMID: 27773339
- Rippe, K. Liquidliquid phase separation in chromatin. Cold Spring Harb. Perspect. Biol., 2022, 14(2), a040683. doi: 10.1101/cshperspect.a040683 PMID: 34127447
- Lei, Z.; Wang, L.; Kim, E.Y.; Cho, J. Phase separation of chromatin and small RNA pathways in plants. Plant J., 2021, 108(5), 1256-1265. doi: 10.1111/tpj.15517 PMID: 34585805
- Nsengimana, B.; Khan, F.A.; Awan, U.A.; Wang, D.; Fang, N.; Wei, W.; Zhang, W.; Ji, S. Pseudogenes and liquid phase separation in epigenetic expression. Front. Oncol., 2022, 12, 912282. doi: 10.3389/fonc.2022.912282 PMID: 35875144
- Lee, D.S.W.; Strom, A.R.; Brangwynne, C.P. The mechanobiology of nuclear phase separation. APL Bioeng., 2022, 6(2), 021503. doi: 10.1063/5.0083286 PMID: 35540725
- Li, X.; An, Z.; Zhang, W.; Li, F. Phase separation: Direct and indirect driving force for high-order chromatin organization. Genes, 2023, 14(2), 499. doi: 10.3390/genes14020499 PMID: 36833426
- Aguzzi, A.; Altmeyer, M. Phase separation: Linking cellular compartmentalization to disease. Trends Cell Biol., 2016, 26(7), 547-558. doi: 10.1016/j.tcb.2016.03.004 PMID: 27051975
- Shen, C.; Li, R.; Negro, R.; Cheng, J.; Vora, S.M.; Fu, T.M.; Wang, A.; He, K.; Andreeva, L.; Gao, P.; Tian, Z.; Flavell, R.A.; Zhu, S.; Wu, H. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell, 2021, 184(23), 5759-5774.e20. doi: 10.1016/j.cell.2021.09.032 PMID: 34678144
- Alberti, S.; Hyman, A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(3), 196-213. doi: 10.1038/s41580-020-00326-6 PMID: 33510441
- Liu, Z.; Qin, Z.; Liu, Y.; Xia, X.; He, L.; Chen, N.; Hu, X.; Peng, X. Liquid‒liquid phase separation: Roles and implications in future cancer treatment. Int. J. Biol. Sci., 2023, 19(13), 4139-4156. doi: 10.7150/ijbs.81521 PMID: 37705755
- Bhat, P.; Honson, D.; Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol., 2021, 22(10), 653-670. doi: 10.1038/s41580-021-00387-1 PMID: 34341548
- Li, J.; Gao, J.; Wang, R. Control of chromatin organization and chromosome behavior during the cell cycle through phase separation. Int. J. Mol. Sci., 2021, 22(22), 12271. doi: 10.3390/ijms222212271 PMID: 34830152
- Pessina, F.; Gioia, U.; Brandi, O.; Farina, S.; Ceccon, M.; Francia, S.; dAdda di Fagagna, F. DNA damage triggers a new phase in neurodegeneration. Trends Genet., 2021, 37(4), 337-354. doi: 10.1016/j.tig.2020.09.006 PMID: 33020022
- Zhang, Y.; Kutateladze, T.G. Liquidliquid phase separation is an intrinsic physicochemical property of chromatin. Nat. Struct. Mol. Biol., 2019, 26(12), 1085-1086. doi: 10.1038/s41594-019-0333-8 PMID: 31695191
- Ling, X.; Liu, X.; Jiang, S.; Fan, L.; Ding, J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. Cell Regen., 2022, 11(1), 42. doi: 10.1186/s13619-022-00145-4 PMID: 36539553
- Aulas, A.; Finetti, P.; Lyons, S.M.; Bertucci, F.; Birnbaum, D.; Acquaviva, C.; Mamessier, E. Revisiting the concept of stress in the prognosis of solid tumors: A role for stress granules proteins? Cancers, 2020, 12(9), 2470. doi: 10.3390/cancers12092470 PMID: 32882814
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquidliquid phase separation in human health and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 290. doi: 10.1038/s41392-021-00678-1 PMID: 34334791
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176(3), 419-434. doi: 10.1016/j.cell.2018.12.035 PMID: 30682370
- McSwiggen, D.T.; Mir, M.; Darzacq, X.; Tjian, R. Evaluating phase separation in live cells: Diagnosis, caveats, and functional consequences. Genes Dev., 2019, 33(23-24), 1619-1634. doi: 10.1101/gad.331520.119 PMID: 31594803
- Liu, X.; Jiang, S.; Ma, L.; Qu, J.; Zhao, L.; Zhu, X.; Ding, J. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol., 2021, 22(1), 230. doi: 10.1186/s13059-021-02455-3 PMID: 34404453
- Bousios, A.; Gaut, B.S.; Darzentas, N. Considerations and complications of mapping small RNA high-throughput data to transposable elements. Mob. DNA, 2017, 8(1), 3. doi: 10.1186/s13100-017-0086-z PMID: 28228849
- Wang, J.; Choi, J.M.; Holehouse, A.S.; Lee, H.O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D.; Poser, I.; Pappu, R.V.; Alberti, S.; Hyman, A.A. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell, 2018, 174(3), 688-699. doi: 10.1016/j.cell.2018.06.006 PMID: 29961577
- Hazawa, M.; Amemori, S.; Nishiyama, Y.; Iga, Y.; Iwashima, Y.; Kobayashi, A.; Nagatani, H.; Mizuno, M.; Takahashi, K.; Wong, R.W. A light-switching pyrene probe to detect phase-separated biomolecules. iScience, 2021, 24(8), 102865. doi: 10.1016/j.isci.2021.102865 PMID: 34386728
- Uversky, V.N. Analyzing IDPs in interactomes. Methods Mol. Biol., 2020, 2141, 895-945. doi: 10.1007/978-1-0716-0524-0_46 PMID: 32696395
- Mészáros, B.; Erdős, G.; Szabó, B.; Schád, É.; Tantos, Á.; Abukhairan, R.; Horváth, T.; Murvai, N.; Kovács, O.P.; Kovács, M.; Tosatto, S.C.E.; Tompa, P.; Dosztányi, Z.; Pancsa, R. PhaSePro: The database of proteins driving liquid-liquid phase separation. Nucleic Acids Res., 2020, 48(D1), D360-D367. PMID: 31612960
- Li, Q.; Wang, X.; Dou, Z.; Yang, W.; Huang, B.; Lou, J.; Zhang, Z. Protein databases related to liquidliquid phase separation. Int. J. Mol. Sci., 2020, 21(18), 6796. doi: 10.3390/ijms21186796 PMID: 32947964
- Wang, X.; Niu, J.; Yang, Y.; Wang, Y.; Sun, Y. SMART FRAP: A robust and quantitative FRAP analysis method for phase separation. Chem. Commun., 2023, 59(16), 2307-2310. doi: 10.1039/D2CC06398K PMID: 36748184
- Chen, Q.; Zhao, L.; Soman, A.; Arkhipova, A.Y.; Li, J.; Li, H.; Chen, Y.; Shi, X.; Nordenskiöld, L. Chromatin liquidliquid phase separation (LLPS) is regulated by ionic conditions and fiber length. Cells, 2022, 11(19), 3145. doi: 10.3390/cells11193145 PMID: 36231107
- Mimura, M.; Tomita, S.; Sugai, H.; Shinkai, Y.; Ishihara, S.; Kurita, R. Uncharged components of single-stranded dna modulate liquidliquid phase separation with cationic linker histone H1. Front. Cell Dev. Biol., 2021, 9, 710729. doi: 10.3389/fcell.2021.710729 PMID: 34422830
- Hammonds, E.F.; Harwig, M.C.; Paintsil, E.A.; Tillison, E.A.; Hill, R.B.; Morrison, E.A. Histone H3 and H4 tails play an important role in nucleosome phase separation. Biophys. Chem., 2022, 283, 106767. doi: 10.1016/j.bpc.2022.106767 PMID: 35158124
- Hagihara, Y.; Asada, S.; Maeda, T.; Nakano, T.; Yamaguchi, S. Tet1 regulates epigenetic remodeling of the pericentromeric heterochromatin and chromocenter organization in DNA hypomethylated cells. PLoS Genet., 2021, 17(6), e1009646. doi: 10.1371/journal.pgen.1009646 PMID: 34166371
- Wang, L.; Hu, M.; Zuo, M.Q.; Zhao, J.; Wu, D.; Huang, L.; Wen, Y.; Li, Y.; Chen, P.; Bao, X.; Dong, M.Q.; Li, G.; Li, P. Rett syndrome-causing mutations compromise MeCP2-mediated liquidliquid phase separation of chromatin. Cell Res., 2020, 30(5), 393-407. doi: 10.1038/s41422-020-0288-7 PMID: 32111972
- Jiang, Y.; Fu, X.; Zhang, Y.; Wang, S.F.; Zhu, H.; Wang, W.K.; Zhang, L.; Wu, P.; Wong, C.C.L.; Li, J.; Ma, J.; Guan, J.S.; Huang, Y.; Hui, J. Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nat. Commun., 2021, 12(1), 5767. doi: 10.1038/s41467-021-26084-3 PMID: 34599184
- Jiang, S.; Fagman, J.B.; Chen, C.; Alberti, S.; Liu, B. Protein phase separation and its role in tumorigenesis. eLife, 2020, 9, e60264. doi: 10.7554/eLife.60264 PMID: 33138914
- Egan, G.; Schimmer, A.D. Contribution of metabolic abnormalities to acute myeloid leukemia pathogenesis. Trends Cell Biol., 2023, 33(6), 455-462. doi: 10.1016/j.tcb.2022.11.004 PMID: 36481232
- Gonskikh, Y.; Stoute, J.; Shen, H.; Budinich, K.; Pingul, B.; Schultz, K.; Elashal, H.; Marmorstein, R.; Shi, J.; Liu, K.F. Noncatalytic regulation of 18 S rRNA methyltransferase DIMT1 in acute myeloid leukemia. Genes Dev., 2023, 37(7-8), 321-335. doi: 10.1101/gad.350298.122 PMID: 37024283
- Papageorgiou, S.; Pashley, S.L.; ORegan, L.; Khan, S.; Bayliss, R.; Fry, A.M. Alternative treatment options to ALK inhibitor monotherapy for eml4-alk-driven lung cancer. Cancers, 2022, 14(14), 3452. doi: 10.3390/cancers14143452 PMID: 35884511
- Qin, Z.; Sun, H.; Yue, M.; Pan, X.; Chen, L.; Feng, X.; Yan, X.; Zhu, X.; Ji, H. Phase separation of EML4ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discov., 2021, 7(1), 33. doi: 10.1038/s41421-021-00270-5 PMID: 33976114
- Zois, C.E.; Favaro, E.; Harris, A.L. Glycogen metabolism in cancer. Biochem. Pharmacol., 2014, 92(1), 3-11. doi: 10.1016/j.bcp.2014.09.001 PMID: 25219323
- Liu, Q.; Li, J.; Zhang, W.; Xiao, C.; Zhang, S.; Nian, C.; Li, J.; Su, D.; Chen, L.; Zhao, Q.; Shao, H.; Zhao, H.; Chen, Q.; Li, Y.; Geng, J.; Hong, L.; Lin, S.; Wu, Q.; Deng, X.; Ke, R.; Ding, J.; Johnson, R.L.; Liu, X.; Chen, L.; Zhou, D. Glycogen accumulation and phase separation drives liver tumor initiation. Cell, 2021, 184(22), 5559-5576.e19. doi: 10.1016/j.cell.2021.10.001 PMID: 34678143
- Hindson, J. Glycogen phase separation and liver cancer. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(12), 831. doi: 10.1038/s41575-021-00548-9 PMID: 34728820
- Zbinden, A.; Pérez-Berlanga, M.; De Rossi, P.; Polymenidou, M. Phase separation and neurodegenerative diseases: A disturbance in the force. Dev. Cell, 2020, 55(1), 45-68. doi: 10.1016/j.devcel.2020.09.014 PMID: 33049211
- Wang, S.; Zheng, J.; Ma, L.; Petersen, R.B.; Xu, L.; Huang, K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(2), 130061. doi: 10.1016/j.bbagen.2021.130061 PMID: 34822925
- Cheng, B.; Gong, H.; Xiao, H.; Petersen, R.B.; Zheng, L.; Huang, K. Inhibiting toxic aggregation of amyloidogenic proteins: A therapeutic strategy for protein misfolding diseases. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(10), 4860-4871. doi: 10.1016/j.bbagen.2013.06.029 PMID: 23820032
- Ma, L.; Yang, C.; Zhang, X.; Li, Y.; Wang, S.; Zheng, L.; Huang, K. C-terminal truncation exacerbates the aggregation and cytotoxicity of α-Synuclein: A vicious cycle in Parkinsons disease. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(12), 3714-3725. doi: 10.1016/j.bbadis.2018.10.003 PMID: 30290273
- Babinchak, W.M.; Haider, R.; Dumm, B.K.; Sarkar, P.; Surewicz, K.; Choi, J.K.; Surewicz, W.K. The role of liquidliquid phase separation in aggregation of the TDP-43 low-complexity domain. J. Biol. Chem., 2019, 294(16), 6306-6317. doi: 10.1074/jbc.RA118.007222 PMID: 30814253
- Yu, H.; Lu, S.; Gasior, K.; Singh, D.; Vazquez-Sanchez, S.; Tapia, O.; Toprani, D.; Beccari, M.S.; Yates, J.R., III; Da Cruz, S.; Newby, J.M.; Lafarga, M.; Gladfelter, A.S.; Villa, E.; Cleveland, D.W. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science, 2021, 371(6529), eabb4309. doi: 10.1126/science.abb4309 PMID: 33335017
- Xiang, L.; Wang, Y.; Liu, S.; Liu, B.; Jin, X.; Cao, X. Targeting protein aggregates with natural products: An optional strategy for neurodegenerative diseases. Int. J. Mol. Sci., 2023, 24(14), 11275. doi: 10.3390/ijms241411275 PMID: 37511037
- Yoshizawa, T.; Ali, R.; Jiou, J.; Fung, H.Y.J.; Burke, K.A.; Kim, S.J.; Lin, Y.; Peeples, W.B.; Saltzberg, D.; Soniat, M.; Baumhardt, J.M.; Oldenbourg, R.; Sali, A.; Fawzi, N.L.; Rosen, M.K.; Chook, Y.M. Nuclear import receptor inhibits phase separation of fus through binding to multiple sites. Cell, 2018, 173(3), 693-705. doi: 10.1016/j.cell.2018.03.003 PMID: 29677513
- Hofweber, M.; Hutten, S.; Bourgeois, B.; Spreitzer, E.; Niedner-Boblenz, A.; Schifferer, M.; Ruepp, M.D.; Simons, M.; Niessing, D.; Madl, T.; Dormann, D. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell, 2018, 173(3), 706-719.e13. doi: 10.1016/j.cell.2018.03.004 PMID: 29677514
- Ma, L.; Zheng, J.; Chen, H.; Zeng, X.; Wang, S.; Yang, C.; Li, X.; Xiao, Y.; Zheng, L.; Chen, H.; Huang, K. A systematic screening of traditional chinese medicine identifies two novel inhibitors against the cytotoxic aggregation of amyloid beta. Front. Pharmacol., 2021, 12, 637766. doi: 10.3389/fphar.2021.637766 PMID: 33897425
- Wegmann, S.; Eftekharzadeh, B.; Tepper, K.; Zoltowska, K.M.; Bennett, R.E.; Dujardin, S.; Laskowski, P.R.; MacKenzie, D.; Kamath, T.; Commins, C.; Vanderburg, C.; Roe, A.D.; Fan, Z.; Molliex, A.M.; Hernandez-Vega, A.; Muller, D.; Hyman, A.A.; Mandelkow, E.; Taylor, J.P.; Hyman, B.T. Tau protein liquidliquid phase separation can initiate tau aggregation. EMBO J., 2018, 37(7), e98049. doi: 10.15252/embj.201798049 PMID: 29472250
- Hnisz, D.; Shrinivas, K.; Young, R.A.; Chakraborty, A.K.; Sharp, P.A. A phase separation model for transcriptional control. Cell, 2017, 169(1), 13-23. doi: 10.1016/j.cell.2017.02.007 PMID: 28340338
- Hazawa, M.; Ikliptikawati, D. K.; Iwashima, Y.; Lin, D. C.; Jiang, Y.; Qiu, Y.; Makiyama, K.; Matsumoto, K.; Kobayashi, A.; Nishide, G.; Keesiang, L.; Yoshino, H.; Minamoto, T.; Suzuki, T.; Kobayashi, I.; Meguro-Horike, M.; Jiang, Y. Y.; Nishiuchi, T.; Konno, H.; Koeffler, H. P.; Hosomichi, K.; Tajima, A.; Horike, S. I.; Wong, R. W. Super-enhancer trapping by the nuclear pore via intrinsically disordered regions of proteins in squamous cell carcinoma cells. Cell Chem. Biol., 2023, 23, 2451-9456. doi: 10.1016/j.chembiol.2023.10.005
- Lu, Y.; Wu, T.; Gutman, O.; Lu, H.; Zhou, Q.; Henis, Y.I.; Luo, K. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol., 2020, 22(4), 453-464. doi: 10.1038/s41556-020-0485-0 PMID: 32203417
- Cai, D.; Feliciano, D.; Dong, P.; Flores, E.; Gruebele, M.; Porat-Shliom, N.; Sukenik, S.; Liu, Z.; Lippincott-Schwartz, J. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol., 2019, 21(12), 1578-1589. doi: 10.1038/s41556-019-0433-z PMID: 31792379
- Boija, A.; Klein, I.A.; Sabari, B.R.; DallAgnese, A.; Coffey, E.L.; Zamudio, A.V.; Li, C.H.; Shrinivas, K.; Manteiga, J.C.; Hannett, N.M.; Abraham, B.J.; Afeyan, L.K.; Guo, Y.E.; Rimel, J.K.; Fant, C.B.; Schuijers, J.; Lee, T.I.; Taatjes, D.J.; Young, R.A. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018, 175(7), 1842-1855. doi: 10.1016/j.cell.2018.10.042 PMID: 30449618
- Cho, W.K.; Spille, J.H.; Hecht, M.; Lee, C.; Li, C.; Grube, V.; Cisse, I.I. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science, 2018, 361(6400), 412-415. doi: 10.1126/science.aar4199 PMID: 29930094
- Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; Zheng, L.; Huang, K. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care, 2020, 43(7), 1399-1407. doi: 10.2337/dc20-0660 PMID: 32409498
- Gibson, B.A.; Doolittle, L.K.; Schneider, M.W.G.; Jensen, L.E.; Gamarra, N.; Henry, L.; Gerlich, D.W.; Redding, S.; Rosen, M.K. Organization of chromatin by intrinsic and regulated phase separation. Cell, 2019, 179(2), 470-484. doi: 10.1016/j.cell.2019.08.037 PMID: 31543265
- Wagh, K.; Garcia, D.A.; Upadhyaya, A. Phase separation in transcription factor dynamics and chromatin organization. Curr. Opin. Struct. Biol., 2021, 71, 148-155. doi: 10.1016/j.sbi.2021.06.009 PMID: 34303933
- Zhang, H.; Qin, W.; Romero, H.; Leonhardt, H.; Cardoso, M.C. Heterochromatin organization and phase separation. Nucleus, 2023, 14(1), 2159142. doi: 10.1080/19491034.2022.2159142 PMID: 36710442
- Chen, W.; Zhu, Q.; Liu, Y.; Zhang, Q. Chromatin remodeling and plant immunity. Adv. Protein Chem. Struct. Biol., 2017, 106, 243-260. doi: 10.1016/bs.apcsb.2016.08.006 PMID: 28057214
- Kumar, V.C.; Pai, R. Genes of the month: H3.3 histone genes: H3F3A and H3F3B. J. Clin. Pathol., 2021, 74(12), 753-758. doi: 10.1136/jclinpath-2021-207857 PMID: 34667098
- Yuan, Y.; Fan, Y.; Zhou, Y.; Qiu, R.; Kang, W.; Liu, Y.; Chen, Y.; Wang, C.; Shi, J.; Liu, C.; Li, Y.; Wu, M.; Huang, K.; Liu, Y.; Zheng, L. Linker histone variant H1.2 is a brake on white adipose tissue browning. Nat. Commun., 2023, 14(1), 3982. doi: 10.1038/s41467-023-39713-w PMID: 37414781
- Wang, Q.; Chen, Y.; Xie, Y.; Yang, D.; Sun, Y.; Yuan, Y.; Chen, H.; Zhang, Y.; Huang, K.; Zheng, L. Histone H1.2 promotes hepatocarcinogenesis by regulating signal transducer and activator of transcription 3 signaling. Cancer Sci., 2022, 113(5), 1679-1692. doi: 10.1111/cas.15336 PMID: 35294987
- Chen, Y.; Shi, J.; Wang, X.; Zhou, L.; Wang, Q.; Xie, Y.; Peng, C.; Kuang, L.; Yang, D.; Yang, J.; Yang, C.; Li, X.; Yuan, Y.; Zhou, Y.; Peng, A.; Zhang, Y.; Chen, H.; Liu, X.; Zheng, L.; Huang, K.; Li, Y. An antioxidant feedforward cycle coordinated by linker histone variant H1.2 and NRF2 that drives nonsmall cell lung cancer progression. Proc. Natl. Acad. Sci., 2023, 120(39), e2306288120. doi: 10.1073/pnas.2306288120 PMID: 37729198
- Chen, H.; Liu, C.; Wang, Q.; Xiong, M.; Zeng, X.; Yang, D.; Xie, Y.; Su, H.; Zhang, Y.; Huang, Y.; Chen, Y.; Yue, J.; Liu, C.; Wang, S.; Huang, K.; Zheng, L. Renal UTX-PHGDH-serine axis regulates metabolic disorders in the kidney and liver. Nat. Commun., 2022, 13(1), 3835. doi: 10.1038/s41467-022-31476-0 PMID: 35788583
- Yang, D.; Fan, Y.; Xiong, M.; Chen, Y.; Zhou, Y.; Liu, X.; Yuan, Y.; Wang, Q.; Zhang, Y.; Petersen, R.B.; Su, H.; Yue, J.; Zhang, C.; Chen, H.; Huang, K.; Zheng, L. Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1. EMBO Rep., 2023, 24(6), e56128. doi: 10.15252/embr.202256128 PMID: 37042626
- Shakya, A.; Park, S.; Rana, N.; King, J.T. Liquid-liquid phase separation of histone proteins in cells: Role in chromatin organization. Biophys. J., 2020, 118(3), 753-764. doi: 10.1016/j.bpj.2019.12.022 PMID: 31952807
- Wang, W.; Wang, Q.; Wan, D.; Sun, Y.; Wang, L.; Chen, H.; Liu, C.; Petersen, R.B.; Li, J.; Xue, W.; Zheng, L.; Huang, K. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy. Autophagy, 2017, 13(5), 941-954. doi: 10.1080/15548627.2017.1293768 PMID: 28409999
- Turner, A.L.; Watson, M.; Wilkins, O.G.; Cato, L.; Travers, A.; Thomas, J.O.; Stott, K. Highly disordered histone H1−DNA model complexes and their condensates. Proc. Natl. Acad. Sci., 2018, 115(47), 11964-11969. doi: 10.1073/pnas.1805943115 PMID: 30301810
- Mimura, M.; Tomita, S.; Shinkai, Y.; Hosokai, T.; Kumeta, H.; Saio, T.; Shiraki, K.; Kurita, R. Quadruplex folding promotes the condensation of linker histones and dnas via liquidliquid phase separation. J. Am. Chem. Soc., 2021, 143(26), 9849-9857. doi: 10.1021/jacs.1c03447 PMID: 34152774
- Buttress, T.; He, S.; Wang, L.; Zhou, S.; Saalbach, G.; Vickers, M.; Li, G.; Li, P.; Feng, X. Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature, 2022, 611(7936), 614-622. doi: 10.1038/s41586-022-05386-6 PMID: 36323776
- Bi, X. Heterochromatin structure: Lessons from the budding yeast. IUBMB Life, 2014, 66(10), 657-666. doi: 10.1002/iub.1322 PMID: 25355678
- Maeda, R.; Tachibana, M. HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Rep., 2022, 23(4), e53581. doi: 10.15252/embr.202153581 PMID: 35166421
- Strom, A.R.; Emelyanov, A.V.; Mir, M.; Fyodorov, D.V.; Darzacq, X.; Karpen, G.H. Phase separation drives heterochromatin domain formation. Nature, 2017, 547(7662), 241-245. doi: 10.1038/nature22989 PMID: 28636597
- Qin, W.; Stengl, A.; Ugur, E.; Leidescher, S.; Ryan, J.; Cardoso, M.C.; Leonhardt, H. HP1β carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus, 2021, 12(1), 44-57. doi: 10.1080/19491034.2021.1889858 PMID: 33660589
- Huo, X.; Ji, L.; Zhang, Y.; Lv, P.; Cao, X.; Wang, Q.; Yan, Z.; Dong, S.; Du, D.; Zhang, F.; Wei, G.; Liu, Y.; Wen, B. The nuclear matrix protein SAFB cooperates with major satellite rnas to stabilize heterochromatin architecture partially through phase separation. Mol. Cell, 2020, 77(2), 368-383. doi: 10.1016/j.molcel.2019.10.001 PMID: 31677973
- Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080. doi: 10.1126/science.1063127 PMID: 11498575
- Wang, L.; Gao, Y.; Zheng, X.; Liu, C.; Dong, S.; Li, R.; Zhang, G.; Wei, Y.; Qu, H.; Li, Y.; Allis, C.D.; Li, G.; Li, H.; Li, P. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell, 2019, 76(4), 646-659. doi: 10.1016/j.molcel.2019.08.019 PMID: 31543422
- Zhang, P.; Zhang, M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin. Epigenetics, 2020, 12(1), 169. doi: 10.1186/s13148-020-00962-x PMID: 33160401
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone post-translational modifications cause and consequence of genome function. Nat. Rev. Genet., 2022, 23(9), 563-580. doi: 10.1038/s41576-022-00468-7 PMID: 35338361
- Xiong, M.; Chen, H.; Fan, Y.; Jin, M.; Yang, D.; Chen, Y.; Zhang, Y.; Petersen, R.B.; Su, H.; Peng, A.; Wang, C.; Zheng, L.; Huang, K. Tubular Elabela-APJ axis attenuates ischemia-reperfusion induced acute kidney injury and the following AKI-CKD transition by protecting renal microcirculation. Theranostics, 2023, 13(10), 3387-3401. doi: 10.7150/thno.84308 PMID: 37351176
- Huang, J.; Wan, D.; Li, J.; Chen, H.; Huang, K.; Zheng, L. Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics, 2015, 10(1), 62-71. doi: 10.4161/15592294.2014.990780 PMID: 25496441
- Wan, D.; Liu, C.; Sun, Y.; Wang, W.; Huang, K.; Zheng, L. MacroH2A1.1 cooperates with EZH2 to promote adipogenesis by regulating Wnt signaling. J. Mol. Cell Biol., 2017, 9(4), 325-337. doi: 10.1093/jmcb/mjx027 PMID: 28992292
- Xue, W.; Huang, J.; Chen, H.; Zhang, Y.; Zhu, X.; Li, J.; Zhang, W.; Yuan, Y.; Wang, Y.; Zheng, L.; Huang, K. Histone methyltransferase G9a modulates hepatic insulin signaling via regulating HMGA1. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(2), 338-346. doi: 10.1016/j.bbadis.2017.10.037 PMID: 29101051
- Hess, J.L. MLL: A histone methyltransferase disrupted in leukemia. Trends Mol. Med., 2004, 10(10), 500-507. doi: 10.1016/j.molmed.2004.08.005 PMID: 15464450
- Zhang, Y.; Xue, W.; Zhang, W.; Yuan, Y.; Zhu, X.; Wang, Q.; Wei, Y.; Yang, D.; Yang, C.; Chen, Y.; Sun, Y.; Wang, S.; Huang, K.; Zheng, L. Histone methyltransferase G9a protects against acute liver injury through GSTP1. Cell Death Differ., 2020, 27(4), 1243-1258. doi: 10.1038/s41418-019-0412-8 PMID: 31515511
- Zhang, W.; Yang, D.; Yuan, Y.; Liu, C.; Chen, H.; Zhang, Y.; Wang, Q.; Petersen, R.B.; Huang, K.; Zheng, L. Muscular G9a regulates muscle-liver-fat axis by musclin under overnutrition in female mice. Diabetes, 2020, 69(12), 2642-2654. doi: 10.2337/db20-0437 PMID: 32994276
- Tang, S.Y.; Zhou, P.J.; Meng, Y.; Zeng, F.R.; Deng, G.T. Gastric cancer: An epigenetic view. World J. Gastrointest. Oncol., 2022, 14(1), 90-109. doi: 10.4251/wjgo.v14.i1.90 PMID: 35116105
- Jang, S.; Hwang, J.; Jeong, H.S. The role of histone acetylation in mesenchymal stem cell differentiation. Chonnam Med. J., 2022, 58(1), 6-12. doi: 10.4068/cmj.2022.58.1.6 PMID: 35169553
- Quan, C.; Chen, Y.; Wang, X.; Yang, D.; Wang, Q.; Huang, Y.; Petersen, R.B.; Liu, X.; Zheng, L.; Li, Y.; Huang, K. Loss of histone lysine methyltransferase EZH2 confers resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Lett., 2020, 495, 41-52. doi: 10.1016/j.canlet.2020.09.003 PMID: 32920200
- Yang, C.; Xu, H.; Yang, D.; Xie, Y.; Xiong, M.; Fan, Y.; Liu, X.; Zhang, Y.; Xiao, Y.; Chen, Y.; Zhou, Y.; Song, L.; Wang, C.; Peng, A.; Petersen, R.B.; Chen, H.; Huang, K.; Zheng, L. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury. Nat. Commun., 2023, 14(1), 4261. doi: 10.1038/s41467-023-40036-z PMID: 37460623
- Krishnan, S.; Trievel, R.C. Purification, biochemical analysis, and structure determination of jmjc lysine demethylases. Methods Enzymol., 2016, 573, 279-301. doi: 10.1016/bs.mie.2016.01.023 PMID: 27372758
- Ashok, A.; Pooranawattanakul, S.; Tai, W.L.; Cho, K.S.; Utheim, T.P.; Cestari, D.M.; Chen, D.F. Epigenetic regulation of optic nerve development, protection, and repair. Int. J. Mol. Sci., 2022, 23(16), 8927. doi: 10.3390/ijms23168927 PMID: 36012190
- Wang, L.L.; Chen, H.; Huang, K.; Zheng, L. Elevated histone acetylations in Müller cell contribute to inflammation: A novel inhibitory effect of minocycline. Glia, 2012, 60(12), 1896-1905. doi: 10.1002/glia.22405 PMID: 22915469
- Yang, Q.; Yang, Y.; Zhou, N.; Tang, K.; Lau, W.B.; Lau, B.; Wang, W.; Xu, L.; Yang, Z.; Huang, S.; Wang, X.; Yi, T.; Zhao, X.; Wei, Y.; Wang, H.; Zhao, L.; Zhou, S. Epigenetics in ovarian cancer: Premise, properties, and perspectives. Mol. Cancer, 2018, 17(1), 109. doi: 10.1186/s12943-018-0855-4 PMID: 30064416
- Kadiyala, C.S.R.; Zheng, L.; Du, Y.; Yohannes, E.; Kao, H.Y.; Miyagi, M.; Kern, T.S. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J. Biol. Chem., 2012, 287(31), 25869-25880. doi: 10.1074/jbc.M112.375204 PMID: 22648458
- Yuan, H.; Han, Y.; Wang, X.; Li, N.; Liu, Q.; Yin, Y.; Wang, H.; Pan, L.; Li, L.; Song, K.; Qiu, T.; Pan, Q.; Chen, Q.; Zhang, G.; Zang, Y.; Tan, M.; Zhang, J.; Li, Q.; Wang, X.; Jiang, J.; Qin, J. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell, 2020, 38(3), 350-365. doi: 10.1016/j.ccell.2020.05.022 PMID: 32619406
- Bhattacharya, S.; Lange, J.J.; Levy, M.; Florens, L.; Washburn, M.P.; Workman, J.L. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J. Biol. Chem., 2021, 297(3), 101075. doi: 10.1016/j.jbc.2021.101075 PMID: 34391778
- Xie, G.; Lee, J.E.; Senft, A.D.; Park, Y.K.; Jang, Y.; Chakraborty, S.; Thompson, J.J.; McKernan, K.; Liu, C.; Macfarlan, T.S.; Rocha, P.P.; Peng, W.; Ge, K. MLL3/MLL4 methyltransferase activities control early embryonic development and embryonic stem cell differentiation in a lineage-selective manner. Nat. Genet., 2023, 55(4), 693-705. doi: 10.1038/s41588-023-01356-4 PMID: 37012455
- Li, W.; Wu, L.; Jia, H.; Lin, Z.; Zhong, R.; Li, Y.; Jiang, C.; Liu, S.; Zhou, X.; Zhang, E. The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression. Cell. Mol. Biol. Lett., 2021, 26(1), 45. doi: 10.1186/s11658-021-00292-7 PMID: 34758724
- Vicioso-Mantis, M.; Aguirre, S.; Martínez-Balbás, M.A.; Jmj, C. JmjC family of histone demethylases form nuclear condensates. Int. J. Mol. Sci., 2022, 23(14), 7664. doi: 10.3390/ijms23147664 PMID: 35887017
- Huang, Y.; Xie, Y.; Yang, D.; Xiong, M.; Chen, X.; Wu, D.; Wang, Q.; Chen, H.; Zheng, L.; Huang, K. Histone demethylase UTX aggravates acetaminophen overdose induced hepatotoxicity through dual mechanisms. Pharmacol. Res., 2022, 175, 106021. doi: 10.1016/j.phrs.2021.106021 PMID: 34883214
- Shi, B.; Li, W.; Song, Y.; Wang, Z.; Ju, R.; Ulman, A.; Hu, J.; Palomba, F.; Zhao, Y.; Le, J.P.; Jarrard, W.; Dimoff, D.; Digman, M.A.; Gratton, E.; Zang, C.; Jiang, H. UTX condensation underlies its tumour-suppressive activity. Nature, 2021, 597(7878), 726-731. doi: 10.1038/s41586-021-03903-7 PMID: 34526716
- Chen, H.; Wang, L.; Wang, W.; Cheng, C.; Zhang, Y.; Zhou, Y.; Wang, C.; Miao, X.; Wang, J.; Wang, C.; Li, J.; Zheng, L.; Huang, K. ELABELA and an ELABELA fragment protect against AKI. J. Am. Soc. Nephrol., 2017, 28(9), 2694-2707. doi: 10.1681/ASN.2016111210 PMID: 28583915
- Chen, H.; Huang, Y.; Zhu, X.; Liu, C.; Yuan, Y.; Su, H.; Zhang, C.; Liu, C.; Xiong, M.; Qu, Y.; Yun, P.; Zheng, L.; Huang, K. Histone demethylase UTX is a therapeutic target for diabetic kidney disease. J. Physiol., 2019, 597(6), 1643-1660. doi: 10.1113/JP277367 PMID: 30516825
- Wang, Y.; Hong, Q.; Xia, Y.; Zhang, Z.; Wen, B. The lysine demethylase KDM7A regulates immediate early genes in neurons. Adv. Sci., 2023, 10(28), 2301367. doi: 10.1002/advs.202301367 PMID: 37565374
- Ming, H.; Wang, Q.; Zhang, Y.; Ji, L.; Cheng, L.; Huo, X.; Yan, Z.; Liu, Z.; Dang, Y.; Wen, B. The nuclear bodies formed by histone demethylase KDM7A. Protein Cell, 2021, 12(4), 297-304. doi: 10.1007/s13238-020-00783-x PMID: 32935279
- Dmitriev, R.I.; Pestov, N.B.; Shakhparonov, M.I.; Okkelman, I.A. Two distinct nuclear localization signals in mammalian MSL1 regulate its function. J. Cell. Biochem., 2014, 115(11), n/a. doi: 10.1002/jcb.24868 PMID: 24913909
- He, Y.; Wang, S.; Liu, S.; Qin, D.; Liu, Z.; Wang, L.; Chen, X.; Zhang, L. MSL1 promotes liver regeneration by driving phase separation of STAT3 and histone h4 and enhancing their acetylation. Adv. Sci., 2023, 10(23), 2301094. doi: 10.1002/advs.202301094 PMID: 37279389
- Li, M.; Li, M.; Xia, Y.; Li, G.; Su, X.; Wang, D.; Ye, J.; Lu, F.; Sun, T.; Ji, C. HDAC1/3-dependent moderate liquidliquid phase separation of YY1 promotes METTL3 expression and AML cell proliferation. Cell Death Dis., 2022, 13(11), 992. doi: 10.1038/s41419-022-05435-y PMID: 36424383
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; Rao, A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929), 930-935. doi: 10.1126/science.1170116 PMID: 19372391
- Fan, Y.; Yuan, Y.; Xiong, M.; Jin, M.; Zhang, D.; Yang, D.; Liu, C.; Petersen, R.B.; Huang, K.; Peng, A.; Zheng, L. Tet1 deficiency exacerbates oxidative stress in acute kidney injury by regulating superoxide dismutase. Theranostics, 2023, 13(15), 5348-5364. doi: 10.7150/thno.87416 PMID: 37908721
- Meng, H.; Cao, Y.; Qin, J.; Song, X.; Zhang, Q.; Shi, Y.; Cao, L. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci., 2015, 11(5), 604-617. doi: 10.7150/ijbs.11218 PMID: 25892967
- Mahmoud, A.; Ali, M. Methyl donor micronutrients that modify dna methylation and cancer outcome. Nutrients, 2019, 11(3), 608. doi: 10.3390/nu11030608 PMID: 30871166
- Yuan, Y.; Liu, C.; Chen, X.; Sun, Y.; Xiong, M.; Fan, Y.; Petersen, R.B.; Chen, H.; Huang, K.; Zheng, L.; Vitamin, C. Vitamin C inhibits the metabolic changes induced by tet1 insufficiency under high fat diet stress. Mol. Nutr. Food Res., 2021, 65(16), 2100417. doi: 10.1002/mnfr.202100417 PMID: 34129274
- Illingworth, R.S. Chromatin folding and nuclear architecture: PRC1 function in 3D. Curr. Opin. Genet. Dev., 2019, 55, 82-90. doi: 10.1016/j.gde.2019.06.006 PMID: 31323466
- Namitz, K.E.W.; Showalter, S.A.; Cosgrove, M.S. Phase separation promotes a highly active oligomeric scaffold of the MLL1 core complex for regulation of histone H3K4 methylation. J. Biol. Chem., 2023, 299(10), 105204. doi: 10.1016/j.jbc.2023.105204 PMID: 37660926
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38. doi: 10.1038/npp.2012.112 PMID: 22781841
- Liu, C.; Wang, J.; Wei, Y.; Zhang, W.; Geng, M.; Yuan, Y.; Chen, Y.; Sun, Y.; Chen, H.; Zhang, Y.; Xiong, M.; Li, Y.; Zheng, L.; Huang, K. Fat-specific knockout of Mecp2 upregulates slpi to reduce obesity by enhancing browning. Diabetes, 2020, 69(1), 35-47. doi: 10.2337/db19-0502 PMID: 31597640
- Wang, J.; Xiao, Y.; Liu, C.; Huang, Y.; Petersen, R.B.; Zheng, L.; Huang, K. Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch. Biochem. Biophys., 2021, 700, 108768. doi: 10.1016/j.abb.2021.108768 PMID: 33485848
- Wang, J.; Xiong, M.; Fan, Y.; Liu, C.; Wang, Q.; Yang, D.; Yuan, Y.; Huang, Y.; Wang, S.; Zhang, Y.; Niu, S.; Yue, J.; Su, H.; Zhang, C.; Chen, H.; Zheng, L.; Huang, K. Mecp2 protects kidney from ischemia-reperfusion injury through transcriptional repressing IL-6/STAT3 signaling. Theranostics, 2022, 12(8), 3896-3910. doi: 10.7150/thno.72515 PMID: 35664078
- Kumar, A.; Kamboj, S.; Malone, B.M.; Kudo, S.; Twiss, J.L.; Czymmek, K.J.; LaSalle, J.M.; Schanen, N.C. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. J. Cell Sci., 2008, 121(7), 1128-1137. doi: 10.1242/jcs.016865 PMID: 18334558
- Fan, C.; Zhang, H.; Fu, L.; Li, Y.; Du, Y.; Qiu, Z.; Lu, F. Rett mutations attenuate phase separation of MeCP2. Cell Discov., 2020, 6(1), 38. doi: 10.1038/s41421-020-0172-0 PMID: 32566246
- Zhang, H.; Romero, H.; Schmidt, A.; Gagova, K.; Qin, W.; Bertulat, B.; Lehmkuhl, A.; Milden, M.; Eck, M.; Meckel, T.; Leonhardt, H.; Cardoso, M.C. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquidliquid phase separation and restricted by DNA methylation. Nucleus, 2022, 13(1), 1-34. doi: 10.1080/19491034.2021.2024691 PMID: 35156529
Supplementary files
