Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations


Cite item

Full Text

Abstract

Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.

About the authors

Jiao Wang

Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Yuchen Chen

Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technolog

Author for correspondence.
Email: info@benthamscience.net

Zixuan Xiao

ISA Wenhua Wuhan High School, Wuhan Economics & Technological Development Zone

Email: info@benthamscience.net

Xikai Liu

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University

Email: info@benthamscience.net

Chengyu Liu

Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Kun Huang

Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Hong Chen

Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Pantoja, C.F.; Zweckstetter, M.; Rezaei-Ghaleh, N. Dynamical component exchange in a model phase separating system: An NMR-based approach. Phys. Chem. Chem. Phys., 2022, 24(10), 6169-6175. doi: 10.1039/D2CP00042C PMID: 35229098
  2. Mudogo, C.N.; Falke, S.; Brognaro, H.; Duszenko, M.; Betzel, C. Protein phase separation and determinants of in cell crystallization. Traffic, 2020, 21(2), 220-230. doi: 10.1111/tra.12711 PMID: 31664760
  3. Bloom, K.; Kolbin, D. Mechanisms of DNA mobilization and sequestration. Genes, 2022, 13(2), 352. doi: 10.3390/genes13020352 PMID: 35205396
  4. Comert, F.; Dubin, P.L. Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems. Adv. Colloid Interface Sci., 2017, 239, 213-217. doi: 10.1016/j.cis.2016.08.005 PMID: 27773339
  5. Rippe, K. Liquid–liquid phase separation in chromatin. Cold Spring Harb. Perspect. Biol., 2022, 14(2), a040683. doi: 10.1101/cshperspect.a040683 PMID: 34127447
  6. Lei, Z.; Wang, L.; Kim, E.Y.; Cho, J. Phase separation of chromatin and small RNA pathways in plants. Plant J., 2021, 108(5), 1256-1265. doi: 10.1111/tpj.15517 PMID: 34585805
  7. Nsengimana, B.; Khan, F.A.; Awan, U.A.; Wang, D.; Fang, N.; Wei, W.; Zhang, W.; Ji, S. Pseudogenes and liquid phase separation in epigenetic expression. Front. Oncol., 2022, 12, 912282. doi: 10.3389/fonc.2022.912282 PMID: 35875144
  8. Lee, D.S.W.; Strom, A.R.; Brangwynne, C.P. The mechanobiology of nuclear phase separation. APL Bioeng., 2022, 6(2), 021503. doi: 10.1063/5.0083286 PMID: 35540725
  9. Li, X.; An, Z.; Zhang, W.; Li, F. Phase separation: Direct and indirect driving force for high-order chromatin organization. Genes, 2023, 14(2), 499. doi: 10.3390/genes14020499 PMID: 36833426
  10. Aguzzi, A.; Altmeyer, M. Phase separation: Linking cellular compartmentalization to disease. Trends Cell Biol., 2016, 26(7), 547-558. doi: 10.1016/j.tcb.2016.03.004 PMID: 27051975
  11. Shen, C.; Li, R.; Negro, R.; Cheng, J.; Vora, S.M.; Fu, T.M.; Wang, A.; He, K.; Andreeva, L.; Gao, P.; Tian, Z.; Flavell, R.A.; Zhu, S.; Wu, H. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell, 2021, 184(23), 5759-5774.e20. doi: 10.1016/j.cell.2021.09.032 PMID: 34678144
  12. Alberti, S.; Hyman, A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(3), 196-213. doi: 10.1038/s41580-020-00326-6 PMID: 33510441
  13. Liu, Z.; Qin, Z.; Liu, Y.; Xia, X.; He, L.; Chen, N.; Hu, X.; Peng, X. Liquid‒liquid phase separation: Roles and implications in future cancer treatment. Int. J. Biol. Sci., 2023, 19(13), 4139-4156. doi: 10.7150/ijbs.81521 PMID: 37705755
  14. Bhat, P.; Honson, D.; Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol., 2021, 22(10), 653-670. doi: 10.1038/s41580-021-00387-1 PMID: 34341548
  15. Li, J.; Gao, J.; Wang, R. Control of chromatin organization and chromosome behavior during the cell cycle through phase separation. Int. J. Mol. Sci., 2021, 22(22), 12271. doi: 10.3390/ijms222212271 PMID: 34830152
  16. Pessina, F.; Gioia, U.; Brandi, O.; Farina, S.; Ceccon, M.; Francia, S.; d’Adda di Fagagna, F. DNA damage triggers a new phase in neurodegeneration. Trends Genet., 2021, 37(4), 337-354. doi: 10.1016/j.tig.2020.09.006 PMID: 33020022
  17. Zhang, Y.; Kutateladze, T.G. Liquid–liquid phase separation is an intrinsic physicochemical property of chromatin. Nat. Struct. Mol. Biol., 2019, 26(12), 1085-1086. doi: 10.1038/s41594-019-0333-8 PMID: 31695191
  18. Ling, X.; Liu, X.; Jiang, S.; Fan, L.; Ding, J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. Cell Regen., 2022, 11(1), 42. doi: 10.1186/s13619-022-00145-4 PMID: 36539553
  19. Aulas, A.; Finetti, P.; Lyons, S.M.; Bertucci, F.; Birnbaum, D.; Acquaviva, C.; Mamessier, E. Revisiting the concept of stress in the prognosis of solid tumors: A role for stress granules proteins? Cancers, 2020, 12(9), 2470. doi: 10.3390/cancers12092470 PMID: 32882814
  20. Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid–liquid phase separation in human health and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 290. doi: 10.1038/s41392-021-00678-1 PMID: 34334791
  21. Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176(3), 419-434. doi: 10.1016/j.cell.2018.12.035 PMID: 30682370
  22. McSwiggen, D.T.; Mir, M.; Darzacq, X.; Tjian, R. Evaluating phase separation in live cells: Diagnosis, caveats, and functional consequences. Genes Dev., 2019, 33(23-24), 1619-1634. doi: 10.1101/gad.331520.119 PMID: 31594803
  23. Liu, X.; Jiang, S.; Ma, L.; Qu, J.; Zhao, L.; Zhu, X.; Ding, J. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol., 2021, 22(1), 230. doi: 10.1186/s13059-021-02455-3 PMID: 34404453
  24. Bousios, A.; Gaut, B.S.; Darzentas, N. Considerations and complications of mapping small RNA high-throughput data to transposable elements. Mob. DNA, 2017, 8(1), 3. doi: 10.1186/s13100-017-0086-z PMID: 28228849
  25. Wang, J.; Choi, J.M.; Holehouse, A.S.; Lee, H.O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D.; Poser, I.; Pappu, R.V.; Alberti, S.; Hyman, A.A. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell, 2018, 174(3), 688-699. doi: 10.1016/j.cell.2018.06.006 PMID: 29961577
  26. Hazawa, M.; Amemori, S.; Nishiyama, Y.; Iga, Y.; Iwashima, Y.; Kobayashi, A.; Nagatani, H.; Mizuno, M.; Takahashi, K.; Wong, R.W. A light-switching pyrene probe to detect phase-separated biomolecules. iScience, 2021, 24(8), 102865. doi: 10.1016/j.isci.2021.102865 PMID: 34386728
  27. Uversky, V.N. Analyzing IDPs in interactomes. Methods Mol. Biol., 2020, 2141, 895-945. doi: 10.1007/978-1-0716-0524-0_46 PMID: 32696395
  28. Mészáros, B.; Erdős, G.; Szabó, B.; Schád, É.; Tantos, Á.; Abukhairan, R.; Horváth, T.; Murvai, N.; Kovács, O.P.; Kovács, M.; Tosatto, S.C.E.; Tompa, P.; Dosztányi, Z.; Pancsa, R. PhaSePro: The database of proteins driving liquid-liquid phase separation. Nucleic Acids Res., 2020, 48(D1), D360-D367. PMID: 31612960
  29. Li, Q.; Wang, X.; Dou, Z.; Yang, W.; Huang, B.; Lou, J.; Zhang, Z. Protein databases related to liquid–liquid phase separation. Int. J. Mol. Sci., 2020, 21(18), 6796. doi: 10.3390/ijms21186796 PMID: 32947964
  30. Wang, X.; Niu, J.; Yang, Y.; Wang, Y.; Sun, Y. SMART FRAP: A robust and quantitative FRAP analysis method for phase separation. Chem. Commun., 2023, 59(16), 2307-2310. doi: 10.1039/D2CC06398K PMID: 36748184
  31. Chen, Q.; Zhao, L.; Soman, A.; Arkhipova, A.Y.; Li, J.; Li, H.; Chen, Y.; Shi, X.; Nordenskiöld, L. Chromatin liquid–liquid phase separation (LLPS) is regulated by ionic conditions and fiber length. Cells, 2022, 11(19), 3145. doi: 10.3390/cells11193145 PMID: 36231107
  32. Mimura, M.; Tomita, S.; Sugai, H.; Shinkai, Y.; Ishihara, S.; Kurita, R. Uncharged components of single-stranded dna modulate liquid–liquid phase separation with cationic linker histone H1. Front. Cell Dev. Biol., 2021, 9, 710729. doi: 10.3389/fcell.2021.710729 PMID: 34422830
  33. Hammonds, E.F.; Harwig, M.C.; Paintsil, E.A.; Tillison, E.A.; Hill, R.B.; Morrison, E.A. Histone H3 and H4 tails play an important role in nucleosome phase separation. Biophys. Chem., 2022, 283, 106767. doi: 10.1016/j.bpc.2022.106767 PMID: 35158124
  34. Hagihara, Y.; Asada, S.; Maeda, T.; Nakano, T.; Yamaguchi, S. Tet1 regulates epigenetic remodeling of the pericentromeric heterochromatin and chromocenter organization in DNA hypomethylated cells. PLoS Genet., 2021, 17(6), e1009646. doi: 10.1371/journal.pgen.1009646 PMID: 34166371
  35. Wang, L.; Hu, M.; Zuo, M.Q.; Zhao, J.; Wu, D.; Huang, L.; Wen, Y.; Li, Y.; Chen, P.; Bao, X.; Dong, M.Q.; Li, G.; Li, P. Rett syndrome-causing mutations compromise MeCP2-mediated liquid–liquid phase separation of chromatin. Cell Res., 2020, 30(5), 393-407. doi: 10.1038/s41422-020-0288-7 PMID: 32111972
  36. Jiang, Y.; Fu, X.; Zhang, Y.; Wang, S.F.; Zhu, H.; Wang, W.K.; Zhang, L.; Wu, P.; Wong, C.C.L.; Li, J.; Ma, J.; Guan, J.S.; Huang, Y.; Hui, J. Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nat. Commun., 2021, 12(1), 5767. doi: 10.1038/s41467-021-26084-3 PMID: 34599184
  37. Jiang, S.; Fagman, J.B.; Chen, C.; Alberti, S.; Liu, B. Protein phase separation and its role in tumorigenesis. eLife, 2020, 9, e60264. doi: 10.7554/eLife.60264 PMID: 33138914
  38. Egan, G.; Schimmer, A.D. Contribution of metabolic abnormalities to acute myeloid leukemia pathogenesis. Trends Cell Biol., 2023, 33(6), 455-462. doi: 10.1016/j.tcb.2022.11.004 PMID: 36481232
  39. Gonskikh, Y.; Stoute, J.; Shen, H.; Budinich, K.; Pingul, B.; Schultz, K.; Elashal, H.; Marmorstein, R.; Shi, J.; Liu, K.F. Noncatalytic regulation of 18 S rRNA methyltransferase DIMT1 in acute myeloid leukemia. Genes Dev., 2023, 37(7-8), 321-335. doi: 10.1101/gad.350298.122 PMID: 37024283
  40. Papageorgiou, S.; Pashley, S.L.; O’Regan, L.; Khan, S.; Bayliss, R.; Fry, A.M. Alternative treatment options to ALK inhibitor monotherapy for eml4-alk-driven lung cancer. Cancers, 2022, 14(14), 3452. doi: 10.3390/cancers14143452 PMID: 35884511
  41. Qin, Z.; Sun, H.; Yue, M.; Pan, X.; Chen, L.; Feng, X.; Yan, X.; Zhu, X.; Ji, H. Phase separation of EML4–ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discov., 2021, 7(1), 33. doi: 10.1038/s41421-021-00270-5 PMID: 33976114
  42. Zois, C.E.; Favaro, E.; Harris, A.L. Glycogen metabolism in cancer. Biochem. Pharmacol., 2014, 92(1), 3-11. doi: 10.1016/j.bcp.2014.09.001 PMID: 25219323
  43. Liu, Q.; Li, J.; Zhang, W.; Xiao, C.; Zhang, S.; Nian, C.; Li, J.; Su, D.; Chen, L.; Zhao, Q.; Shao, H.; Zhao, H.; Chen, Q.; Li, Y.; Geng, J.; Hong, L.; Lin, S.; Wu, Q.; Deng, X.; Ke, R.; Ding, J.; Johnson, R.L.; Liu, X.; Chen, L.; Zhou, D. Glycogen accumulation and phase separation drives liver tumor initiation. Cell, 2021, 184(22), 5559-5576.e19. doi: 10.1016/j.cell.2021.10.001 PMID: 34678143
  44. Hindson, J. Glycogen phase separation and liver cancer. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(12), 831. doi: 10.1038/s41575-021-00548-9 PMID: 34728820
  45. Zbinden, A.; Pérez-Berlanga, M.; De Rossi, P.; Polymenidou, M. Phase separation and neurodegenerative diseases: A disturbance in the force. Dev. Cell, 2020, 55(1), 45-68. doi: 10.1016/j.devcel.2020.09.014 PMID: 33049211
  46. Wang, S.; Zheng, J.; Ma, L.; Petersen, R.B.; Xu, L.; Huang, K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(2), 130061. doi: 10.1016/j.bbagen.2021.130061 PMID: 34822925
  47. Cheng, B.; Gong, H.; Xiao, H.; Petersen, R.B.; Zheng, L.; Huang, K. Inhibiting toxic aggregation of amyloidogenic proteins: A therapeutic strategy for protein misfolding diseases. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(10), 4860-4871. doi: 10.1016/j.bbagen.2013.06.029 PMID: 23820032
  48. Ma, L.; Yang, C.; Zhang, X.; Li, Y.; Wang, S.; Zheng, L.; Huang, K. C-terminal truncation exacerbates the aggregation and cytotoxicity of α-Synuclein: A vicious cycle in Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(12), 3714-3725. doi: 10.1016/j.bbadis.2018.10.003 PMID: 30290273
  49. Babinchak, W.M.; Haider, R.; Dumm, B.K.; Sarkar, P.; Surewicz, K.; Choi, J.K.; Surewicz, W.K. The role of liquid–liquid phase separation in aggregation of the TDP-43 low-complexity domain. J. Biol. Chem., 2019, 294(16), 6306-6317. doi: 10.1074/jbc.RA118.007222 PMID: 30814253
  50. Yu, H.; Lu, S.; Gasior, K.; Singh, D.; Vazquez-Sanchez, S.; Tapia, O.; Toprani, D.; Beccari, M.S.; Yates, J.R., III; Da Cruz, S.; Newby, J.M.; Lafarga, M.; Gladfelter, A.S.; Villa, E.; Cleveland, D.W. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science, 2021, 371(6529), eabb4309. doi: 10.1126/science.abb4309 PMID: 33335017
  51. Xiang, L.; Wang, Y.; Liu, S.; Liu, B.; Jin, X.; Cao, X. Targeting protein aggregates with natural products: An optional strategy for neurodegenerative diseases. Int. J. Mol. Sci., 2023, 24(14), 11275. doi: 10.3390/ijms241411275 PMID: 37511037
  52. Yoshizawa, T.; Ali, R.; Jiou, J.; Fung, H.Y.J.; Burke, K.A.; Kim, S.J.; Lin, Y.; Peeples, W.B.; Saltzberg, D.; Soniat, M.; Baumhardt, J.M.; Oldenbourg, R.; Sali, A.; Fawzi, N.L.; Rosen, M.K.; Chook, Y.M. Nuclear import receptor inhibits phase separation of fus through binding to multiple sites. Cell, 2018, 173(3), 693-705. doi: 10.1016/j.cell.2018.03.003 PMID: 29677513
  53. Hofweber, M.; Hutten, S.; Bourgeois, B.; Spreitzer, E.; Niedner-Boblenz, A.; Schifferer, M.; Ruepp, M.D.; Simons, M.; Niessing, D.; Madl, T.; Dormann, D. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell, 2018, 173(3), 706-719.e13. doi: 10.1016/j.cell.2018.03.004 PMID: 29677514
  54. Ma, L.; Zheng, J.; Chen, H.; Zeng, X.; Wang, S.; Yang, C.; Li, X.; Xiao, Y.; Zheng, L.; Chen, H.; Huang, K. A systematic screening of traditional chinese medicine identifies two novel inhibitors against the cytotoxic aggregation of amyloid beta. Front. Pharmacol., 2021, 12, 637766. doi: 10.3389/fphar.2021.637766 PMID: 33897425
  55. Wegmann, S.; Eftekharzadeh, B.; Tepper, K.; Zoltowska, K.M.; Bennett, R.E.; Dujardin, S.; Laskowski, P.R.; MacKenzie, D.; Kamath, T.; Commins, C.; Vanderburg, C.; Roe, A.D.; Fan, Z.; Molliex, A.M.; Hernandez-Vega, A.; Muller, D.; Hyman, A.A.; Mandelkow, E.; Taylor, J.P.; Hyman, B.T. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J., 2018, 37(7), e98049. doi: 10.15252/embj.201798049 PMID: 29472250
  56. Hnisz, D.; Shrinivas, K.; Young, R.A.; Chakraborty, A.K.; Sharp, P.A. A phase separation model for transcriptional control. Cell, 2017, 169(1), 13-23. doi: 10.1016/j.cell.2017.02.007 PMID: 28340338
  57. Hazawa, M.; Ikliptikawati, D. K.; Iwashima, Y.; Lin, D. C.; Jiang, Y.; Qiu, Y.; Makiyama, K.; Matsumoto, K.; Kobayashi, A.; Nishide, G.; Keesiang, L.; Yoshino, H.; Minamoto, T.; Suzuki, T.; Kobayashi, I.; Meguro-Horike, M.; Jiang, Y. Y.; Nishiuchi, T.; Konno, H.; Koeffler, H. P.; Hosomichi, K.; Tajima, A.; Horike, S. I.; Wong, R. W. Super-enhancer trapping by the nuclear pore via intrinsically disordered regions of proteins in squamous cell carcinoma cells. Cell Chem. Biol., 2023, 23, 2451-9456. doi: 10.1016/j.chembiol.2023.10.005
  58. Lu, Y.; Wu, T.; Gutman, O.; Lu, H.; Zhou, Q.; Henis, Y.I.; Luo, K. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol., 2020, 22(4), 453-464. doi: 10.1038/s41556-020-0485-0 PMID: 32203417
  59. Cai, D.; Feliciano, D.; Dong, P.; Flores, E.; Gruebele, M.; Porat-Shliom, N.; Sukenik, S.; Liu, Z.; Lippincott-Schwartz, J. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol., 2019, 21(12), 1578-1589. doi: 10.1038/s41556-019-0433-z PMID: 31792379
  60. Boija, A.; Klein, I.A.; Sabari, B.R.; Dall’Agnese, A.; Coffey, E.L.; Zamudio, A.V.; Li, C.H.; Shrinivas, K.; Manteiga, J.C.; Hannett, N.M.; Abraham, B.J.; Afeyan, L.K.; Guo, Y.E.; Rimel, J.K.; Fant, C.B.; Schuijers, J.; Lee, T.I.; Taatjes, D.J.; Young, R.A. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018, 175(7), 1842-1855. doi: 10.1016/j.cell.2018.10.042 PMID: 30449618
  61. Cho, W.K.; Spille, J.H.; Hecht, M.; Lee, C.; Li, C.; Grube, V.; Cisse, I.I. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science, 2018, 361(6400), 412-415. doi: 10.1126/science.aar4199 PMID: 29930094
  62. Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; Zheng, L.; Huang, K. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care, 2020, 43(7), 1399-1407. doi: 10.2337/dc20-0660 PMID: 32409498
  63. Gibson, B.A.; Doolittle, L.K.; Schneider, M.W.G.; Jensen, L.E.; Gamarra, N.; Henry, L.; Gerlich, D.W.; Redding, S.; Rosen, M.K. Organization of chromatin by intrinsic and regulated phase separation. Cell, 2019, 179(2), 470-484. doi: 10.1016/j.cell.2019.08.037 PMID: 31543265
  64. Wagh, K.; Garcia, D.A.; Upadhyaya, A. Phase separation in transcription factor dynamics and chromatin organization. Curr. Opin. Struct. Biol., 2021, 71, 148-155. doi: 10.1016/j.sbi.2021.06.009 PMID: 34303933
  65. Zhang, H.; Qin, W.; Romero, H.; Leonhardt, H.; Cardoso, M.C. Heterochromatin organization and phase separation. Nucleus, 2023, 14(1), 2159142. doi: 10.1080/19491034.2022.2159142 PMID: 36710442
  66. Chen, W.; Zhu, Q.; Liu, Y.; Zhang, Q. Chromatin remodeling and plant immunity. Adv. Protein Chem. Struct. Biol., 2017, 106, 243-260. doi: 10.1016/bs.apcsb.2016.08.006 PMID: 28057214
  67. Kumar, V.C.; Pai, R. Genes of the month: H3.3 histone genes: H3F3A and H3F3B. J. Clin. Pathol., 2021, 74(12), 753-758. doi: 10.1136/jclinpath-2021-207857 PMID: 34667098
  68. Yuan, Y.; Fan, Y.; Zhou, Y.; Qiu, R.; Kang, W.; Liu, Y.; Chen, Y.; Wang, C.; Shi, J.; Liu, C.; Li, Y.; Wu, M.; Huang, K.; Liu, Y.; Zheng, L. Linker histone variant H1.2 is a brake on white adipose tissue browning. Nat. Commun., 2023, 14(1), 3982. doi: 10.1038/s41467-023-39713-w PMID: 37414781
  69. Wang, Q.; Chen, Y.; Xie, Y.; Yang, D.; Sun, Y.; Yuan, Y.; Chen, H.; Zhang, Y.; Huang, K.; Zheng, L. Histone H1.2 promotes hepatocarcinogenesis by regulating signal transducer and activator of transcription 3 signaling. Cancer Sci., 2022, 113(5), 1679-1692. doi: 10.1111/cas.15336 PMID: 35294987
  70. Chen, Y.; Shi, J.; Wang, X.; Zhou, L.; Wang, Q.; Xie, Y.; Peng, C.; Kuang, L.; Yang, D.; Yang, J.; Yang, C.; Li, X.; Yuan, Y.; Zhou, Y.; Peng, A.; Zhang, Y.; Chen, H.; Liu, X.; Zheng, L.; Huang, K.; Li, Y. An antioxidant feedforward cycle coordinated by linker histone variant H1.2 and NRF2 that drives nonsmall cell lung cancer progression. Proc. Natl. Acad. Sci., 2023, 120(39), e2306288120. doi: 10.1073/pnas.2306288120 PMID: 37729198
  71. Chen, H.; Liu, C.; Wang, Q.; Xiong, M.; Zeng, X.; Yang, D.; Xie, Y.; Su, H.; Zhang, Y.; Huang, Y.; Chen, Y.; Yue, J.; Liu, C.; Wang, S.; Huang, K.; Zheng, L. Renal UTX-PHGDH-serine axis regulates metabolic disorders in the kidney and liver. Nat. Commun., 2022, 13(1), 3835. doi: 10.1038/s41467-022-31476-0 PMID: 35788583
  72. Yang, D.; Fan, Y.; Xiong, M.; Chen, Y.; Zhou, Y.; Liu, X.; Yuan, Y.; Wang, Q.; Zhang, Y.; Petersen, R.B.; Su, H.; Yue, J.; Zhang, C.; Chen, H.; Huang, K.; Zheng, L. Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1. EMBO Rep., 2023, 24(6), e56128. doi: 10.15252/embr.202256128 PMID: 37042626
  73. Shakya, A.; Park, S.; Rana, N.; King, J.T. Liquid-liquid phase separation of histone proteins in cells: Role in chromatin organization. Biophys. J., 2020, 118(3), 753-764. doi: 10.1016/j.bpj.2019.12.022 PMID: 31952807
  74. Wang, W.; Wang, Q.; Wan, D.; Sun, Y.; Wang, L.; Chen, H.; Liu, C.; Petersen, R.B.; Li, J.; Xue, W.; Zheng, L.; Huang, K. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy. Autophagy, 2017, 13(5), 941-954. doi: 10.1080/15548627.2017.1293768 PMID: 28409999
  75. Turner, A.L.; Watson, M.; Wilkins, O.G.; Cato, L.; Travers, A.; Thomas, J.O.; Stott, K. Highly disordered histone H1−DNA model complexes and their condensates. Proc. Natl. Acad. Sci., 2018, 115(47), 11964-11969. doi: 10.1073/pnas.1805943115 PMID: 30301810
  76. Mimura, M.; Tomita, S.; Shinkai, Y.; Hosokai, T.; Kumeta, H.; Saio, T.; Shiraki, K.; Kurita, R. Quadruplex folding promotes the condensation of linker histones and dnas via liquid–liquid phase separation. J. Am. Chem. Soc., 2021, 143(26), 9849-9857. doi: 10.1021/jacs.1c03447 PMID: 34152774
  77. Buttress, T.; He, S.; Wang, L.; Zhou, S.; Saalbach, G.; Vickers, M.; Li, G.; Li, P.; Feng, X. Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature, 2022, 611(7936), 614-622. doi: 10.1038/s41586-022-05386-6 PMID: 36323776
  78. Bi, X. Heterochromatin structure: Lessons from the budding yeast. IUBMB Life, 2014, 66(10), 657-666. doi: 10.1002/iub.1322 PMID: 25355678
  79. Maeda, R.; Tachibana, M. HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Rep., 2022, 23(4), e53581. doi: 10.15252/embr.202153581 PMID: 35166421
  80. Strom, A.R.; Emelyanov, A.V.; Mir, M.; Fyodorov, D.V.; Darzacq, X.; Karpen, G.H. Phase separation drives heterochromatin domain formation. Nature, 2017, 547(7662), 241-245. doi: 10.1038/nature22989 PMID: 28636597
  81. Qin, W.; Stengl, A.; Ugur, E.; Leidescher, S.; Ryan, J.; Cardoso, M.C.; Leonhardt, H. HP1β carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus, 2021, 12(1), 44-57. doi: 10.1080/19491034.2021.1889858 PMID: 33660589
  82. Huo, X.; Ji, L.; Zhang, Y.; Lv, P.; Cao, X.; Wang, Q.; Yan, Z.; Dong, S.; Du, D.; Zhang, F.; Wei, G.; Liu, Y.; Wen, B. The nuclear matrix protein SAFB cooperates with major satellite rnas to stabilize heterochromatin architecture partially through phase separation. Mol. Cell, 2020, 77(2), 368-383. doi: 10.1016/j.molcel.2019.10.001 PMID: 31677973
  83. Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080. doi: 10.1126/science.1063127 PMID: 11498575
  84. Wang, L.; Gao, Y.; Zheng, X.; Liu, C.; Dong, S.; Li, R.; Zhang, G.; Wei, Y.; Qu, H.; Li, Y.; Allis, C.D.; Li, G.; Li, H.; Li, P. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell, 2019, 76(4), 646-659. doi: 10.1016/j.molcel.2019.08.019 PMID: 31543422
  85. Zhang, P.; Zhang, M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin. Epigenetics, 2020, 12(1), 169. doi: 10.1186/s13148-020-00962-x PMID: 33160401
  86. Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone post-translational modifications cause and consequence of genome function. Nat. Rev. Genet., 2022, 23(9), 563-580. doi: 10.1038/s41576-022-00468-7 PMID: 35338361
  87. Xiong, M.; Chen, H.; Fan, Y.; Jin, M.; Yang, D.; Chen, Y.; Zhang, Y.; Petersen, R.B.; Su, H.; Peng, A.; Wang, C.; Zheng, L.; Huang, K. Tubular Elabela-APJ axis attenuates ischemia-reperfusion induced acute kidney injury and the following AKI-CKD transition by protecting renal microcirculation. Theranostics, 2023, 13(10), 3387-3401. doi: 10.7150/thno.84308 PMID: 37351176
  88. Huang, J.; Wan, D.; Li, J.; Chen, H.; Huang, K.; Zheng, L. Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics, 2015, 10(1), 62-71. doi: 10.4161/15592294.2014.990780 PMID: 25496441
  89. Wan, D.; Liu, C.; Sun, Y.; Wang, W.; Huang, K.; Zheng, L. MacroH2A1.1 cooperates with EZH2 to promote adipogenesis by regulating Wnt signaling. J. Mol. Cell Biol., 2017, 9(4), 325-337. doi: 10.1093/jmcb/mjx027 PMID: 28992292
  90. Xue, W.; Huang, J.; Chen, H.; Zhang, Y.; Zhu, X.; Li, J.; Zhang, W.; Yuan, Y.; Wang, Y.; Zheng, L.; Huang, K. Histone methyltransferase G9a modulates hepatic insulin signaling via regulating HMGA1. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(2), 338-346. doi: 10.1016/j.bbadis.2017.10.037 PMID: 29101051
  91. Hess, J.L. MLL: A histone methyltransferase disrupted in leukemia. Trends Mol. Med., 2004, 10(10), 500-507. doi: 10.1016/j.molmed.2004.08.005 PMID: 15464450
  92. Zhang, Y.; Xue, W.; Zhang, W.; Yuan, Y.; Zhu, X.; Wang, Q.; Wei, Y.; Yang, D.; Yang, C.; Chen, Y.; Sun, Y.; Wang, S.; Huang, K.; Zheng, L. Histone methyltransferase G9a protects against acute liver injury through GSTP1. Cell Death Differ., 2020, 27(4), 1243-1258. doi: 10.1038/s41418-019-0412-8 PMID: 31515511
  93. Zhang, W.; Yang, D.; Yuan, Y.; Liu, C.; Chen, H.; Zhang, Y.; Wang, Q.; Petersen, R.B.; Huang, K.; Zheng, L. Muscular G9a regulates muscle-liver-fat axis by musclin under overnutrition in female mice. Diabetes, 2020, 69(12), 2642-2654. doi: 10.2337/db20-0437 PMID: 32994276
  94. Tang, S.Y.; Zhou, P.J.; Meng, Y.; Zeng, F.R.; Deng, G.T. Gastric cancer: An epigenetic view. World J. Gastrointest. Oncol., 2022, 14(1), 90-109. doi: 10.4251/wjgo.v14.i1.90 PMID: 35116105
  95. Jang, S.; Hwang, J.; Jeong, H.S. The role of histone acetylation in mesenchymal stem cell differentiation. Chonnam Med. J., 2022, 58(1), 6-12. doi: 10.4068/cmj.2022.58.1.6 PMID: 35169553
  96. Quan, C.; Chen, Y.; Wang, X.; Yang, D.; Wang, Q.; Huang, Y.; Petersen, R.B.; Liu, X.; Zheng, L.; Li, Y.; Huang, K. Loss of histone lysine methyltransferase EZH2 confers resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Lett., 2020, 495, 41-52. doi: 10.1016/j.canlet.2020.09.003 PMID: 32920200
  97. Yang, C.; Xu, H.; Yang, D.; Xie, Y.; Xiong, M.; Fan, Y.; Liu, X.; Zhang, Y.; Xiao, Y.; Chen, Y.; Zhou, Y.; Song, L.; Wang, C.; Peng, A.; Petersen, R.B.; Chen, H.; Huang, K.; Zheng, L. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury. Nat. Commun., 2023, 14(1), 4261. doi: 10.1038/s41467-023-40036-z PMID: 37460623
  98. Krishnan, S.; Trievel, R.C. Purification, biochemical analysis, and structure determination of jmjc lysine demethylases. Methods Enzymol., 2016, 573, 279-301. doi: 10.1016/bs.mie.2016.01.023 PMID: 27372758
  99. Ashok, A.; Pooranawattanakul, S.; Tai, W.L.; Cho, K.S.; Utheim, T.P.; Cestari, D.M.; Chen, D.F. Epigenetic regulation of optic nerve development, protection, and repair. Int. J. Mol. Sci., 2022, 23(16), 8927. doi: 10.3390/ijms23168927 PMID: 36012190
  100. Wang, L.L.; Chen, H.; Huang, K.; Zheng, L. Elevated histone acetylations in Müller cell contribute to inflammation: A novel inhibitory effect of minocycline. Glia, 2012, 60(12), 1896-1905. doi: 10.1002/glia.22405 PMID: 22915469
  101. Yang, Q.; Yang, Y.; Zhou, N.; Tang, K.; Lau, W.B.; Lau, B.; Wang, W.; Xu, L.; Yang, Z.; Huang, S.; Wang, X.; Yi, T.; Zhao, X.; Wei, Y.; Wang, H.; Zhao, L.; Zhou, S. Epigenetics in ovarian cancer: Premise, properties, and perspectives. Mol. Cancer, 2018, 17(1), 109. doi: 10.1186/s12943-018-0855-4 PMID: 30064416
  102. Kadiyala, C.S.R.; Zheng, L.; Du, Y.; Yohannes, E.; Kao, H.Y.; Miyagi, M.; Kern, T.S. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J. Biol. Chem., 2012, 287(31), 25869-25880. doi: 10.1074/jbc.M112.375204 PMID: 22648458
  103. Yuan, H.; Han, Y.; Wang, X.; Li, N.; Liu, Q.; Yin, Y.; Wang, H.; Pan, L.; Li, L.; Song, K.; Qiu, T.; Pan, Q.; Chen, Q.; Zhang, G.; Zang, Y.; Tan, M.; Zhang, J.; Li, Q.; Wang, X.; Jiang, J.; Qin, J. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell, 2020, 38(3), 350-365. doi: 10.1016/j.ccell.2020.05.022 PMID: 32619406
  104. Bhattacharya, S.; Lange, J.J.; Levy, M.; Florens, L.; Washburn, M.P.; Workman, J.L. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J. Biol. Chem., 2021, 297(3), 101075. doi: 10.1016/j.jbc.2021.101075 PMID: 34391778
  105. Xie, G.; Lee, J.E.; Senft, A.D.; Park, Y.K.; Jang, Y.; Chakraborty, S.; Thompson, J.J.; McKernan, K.; Liu, C.; Macfarlan, T.S.; Rocha, P.P.; Peng, W.; Ge, K. MLL3/MLL4 methyltransferase activities control early embryonic development and embryonic stem cell differentiation in a lineage-selective manner. Nat. Genet., 2023, 55(4), 693-705. doi: 10.1038/s41588-023-01356-4 PMID: 37012455
  106. Li, W.; Wu, L.; Jia, H.; Lin, Z.; Zhong, R.; Li, Y.; Jiang, C.; Liu, S.; Zhou, X.; Zhang, E. The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression. Cell. Mol. Biol. Lett., 2021, 26(1), 45. doi: 10.1186/s11658-021-00292-7 PMID: 34758724
  107. Vicioso-Mantis, M.; Aguirre, S.; Martínez-Balbás, M.A.; Jmj, C. JmjC family of histone demethylases form nuclear condensates. Int. J. Mol. Sci., 2022, 23(14), 7664. doi: 10.3390/ijms23147664 PMID: 35887017
  108. Huang, Y.; Xie, Y.; Yang, D.; Xiong, M.; Chen, X.; Wu, D.; Wang, Q.; Chen, H.; Zheng, L.; Huang, K. Histone demethylase UTX aggravates acetaminophen overdose induced hepatotoxicity through dual mechanisms. Pharmacol. Res., 2022, 175, 106021. doi: 10.1016/j.phrs.2021.106021 PMID: 34883214
  109. Shi, B.; Li, W.; Song, Y.; Wang, Z.; Ju, R.; Ulman, A.; Hu, J.; Palomba, F.; Zhao, Y.; Le, J.P.; Jarrard, W.; Dimoff, D.; Digman, M.A.; Gratton, E.; Zang, C.; Jiang, H. UTX condensation underlies its tumour-suppressive activity. Nature, 2021, 597(7878), 726-731. doi: 10.1038/s41586-021-03903-7 PMID: 34526716
  110. Chen, H.; Wang, L.; Wang, W.; Cheng, C.; Zhang, Y.; Zhou, Y.; Wang, C.; Miao, X.; Wang, J.; Wang, C.; Li, J.; Zheng, L.; Huang, K. ELABELA and an ELABELA fragment protect against AKI. J. Am. Soc. Nephrol., 2017, 28(9), 2694-2707. doi: 10.1681/ASN.2016111210 PMID: 28583915
  111. Chen, H.; Huang, Y.; Zhu, X.; Liu, C.; Yuan, Y.; Su, H.; Zhang, C.; Liu, C.; Xiong, M.; Qu, Y.; Yun, P.; Zheng, L.; Huang, K. Histone demethylase UTX is a therapeutic target for diabetic kidney disease. J. Physiol., 2019, 597(6), 1643-1660. doi: 10.1113/JP277367 PMID: 30516825
  112. Wang, Y.; Hong, Q.; Xia, Y.; Zhang, Z.; Wen, B. The lysine demethylase KDM7A regulates immediate early genes in neurons. Adv. Sci., 2023, 10(28), 2301367. doi: 10.1002/advs.202301367 PMID: 37565374
  113. Ming, H.; Wang, Q.; Zhang, Y.; Ji, L.; Cheng, L.; Huo, X.; Yan, Z.; Liu, Z.; Dang, Y.; Wen, B. The nuclear bodies formed by histone demethylase KDM7A. Protein Cell, 2021, 12(4), 297-304. doi: 10.1007/s13238-020-00783-x PMID: 32935279
  114. Dmitriev, R.I.; Pestov, N.B.; Shakhparonov, M.I.; Okkelman, I.A. Two distinct nuclear localization signals in mammalian MSL1 regulate its function. J. Cell. Biochem., 2014, 115(11), n/a. doi: 10.1002/jcb.24868 PMID: 24913909
  115. He, Y.; Wang, S.; Liu, S.; Qin, D.; Liu, Z.; Wang, L.; Chen, X.; Zhang, L. MSL1 promotes liver regeneration by driving phase separation of STAT3 and histone h4 and enhancing their acetylation. Adv. Sci., 2023, 10(23), 2301094. doi: 10.1002/advs.202301094 PMID: 37279389
  116. Li, M.; Li, M.; Xia, Y.; Li, G.; Su, X.; Wang, D.; Ye, J.; Lu, F.; Sun, T.; Ji, C. HDAC1/3-dependent moderate liquid–liquid phase separation of YY1 promotes METTL3 expression and AML cell proliferation. Cell Death Dis., 2022, 13(11), 992. doi: 10.1038/s41419-022-05435-y PMID: 36424383
  117. Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; Rao, A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929), 930-935. doi: 10.1126/science.1170116 PMID: 19372391
  118. Fan, Y.; Yuan, Y.; Xiong, M.; Jin, M.; Zhang, D.; Yang, D.; Liu, C.; Petersen, R.B.; Huang, K.; Peng, A.; Zheng, L. Tet1 deficiency exacerbates oxidative stress in acute kidney injury by regulating superoxide dismutase. Theranostics, 2023, 13(15), 5348-5364. doi: 10.7150/thno.87416 PMID: 37908721
  119. Meng, H.; Cao, Y.; Qin, J.; Song, X.; Zhang, Q.; Shi, Y.; Cao, L. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci., 2015, 11(5), 604-617. doi: 10.7150/ijbs.11218 PMID: 25892967
  120. Mahmoud, A.; Ali, M. Methyl donor micronutrients that modify dna methylation and cancer outcome. Nutrients, 2019, 11(3), 608. doi: 10.3390/nu11030608 PMID: 30871166
  121. Yuan, Y.; Liu, C.; Chen, X.; Sun, Y.; Xiong, M.; Fan, Y.; Petersen, R.B.; Chen, H.; Huang, K.; Zheng, L.; Vitamin, C. Vitamin C inhibits the metabolic changes induced by tet1 insufficiency under high fat diet stress. Mol. Nutr. Food Res., 2021, 65(16), 2100417. doi: 10.1002/mnfr.202100417 PMID: 34129274
  122. Illingworth, R.S. Chromatin folding and nuclear architecture: PRC1 function in 3D. Curr. Opin. Genet. Dev., 2019, 55, 82-90. doi: 10.1016/j.gde.2019.06.006 PMID: 31323466
  123. Namitz, K.E.W.; Showalter, S.A.; Cosgrove, M.S. Phase separation promotes a highly active oligomeric scaffold of the MLL1 core complex for regulation of histone H3K4 methylation. J. Biol. Chem., 2023, 299(10), 105204. doi: 10.1016/j.jbc.2023.105204 PMID: 37660926
  124. Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38. doi: 10.1038/npp.2012.112 PMID: 22781841
  125. Liu, C.; Wang, J.; Wei, Y.; Zhang, W.; Geng, M.; Yuan, Y.; Chen, Y.; Sun, Y.; Chen, H.; Zhang, Y.; Xiong, M.; Li, Y.; Zheng, L.; Huang, K. Fat-specific knockout of Mecp2 upregulates slpi to reduce obesity by enhancing browning. Diabetes, 2020, 69(1), 35-47. doi: 10.2337/db19-0502 PMID: 31597640
  126. Wang, J.; Xiao, Y.; Liu, C.; Huang, Y.; Petersen, R.B.; Zheng, L.; Huang, K. Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch. Biochem. Biophys., 2021, 700, 108768. doi: 10.1016/j.abb.2021.108768 PMID: 33485848
  127. Wang, J.; Xiong, M.; Fan, Y.; Liu, C.; Wang, Q.; Yang, D.; Yuan, Y.; Huang, Y.; Wang, S.; Zhang, Y.; Niu, S.; Yue, J.; Su, H.; Zhang, C.; Chen, H.; Zheng, L.; Huang, K. Mecp2 protects kidney from ischemia-reperfusion injury through transcriptional repressing IL-6/STAT3 signaling. Theranostics, 2022, 12(8), 3896-3910. doi: 10.7150/thno.72515 PMID: 35664078
  128. Kumar, A.; Kamboj, S.; Malone, B.M.; Kudo, S.; Twiss, J.L.; Czymmek, K.J.; LaSalle, J.M.; Schanen, N.C. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. J. Cell Sci., 2008, 121(7), 1128-1137. doi: 10.1242/jcs.016865 PMID: 18334558
  129. Fan, C.; Zhang, H.; Fu, L.; Li, Y.; Du, Y.; Qiu, Z.; Lu, F. Rett mutations attenuate phase separation of MeCP2. Cell Discov., 2020, 6(1), 38. doi: 10.1038/s41421-020-0172-0 PMID: 32566246
  130. Zhang, H.; Romero, H.; Schmidt, A.; Gagova, K.; Qin, W.; Bertulat, B.; Lehmkuhl, A.; Milden, M.; Eck, M.; Meckel, T.; Leonhardt, H.; Cardoso, M.C. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus, 2022, 13(1), 1-34. doi: 10.1080/19491034.2021.2024691 PMID: 35156529

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers