A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy


如何引用文章

全文:

详细

Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.

作者简介

Felipe Mesquita

Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará

Email: info@benthamscience.net

Luina Lima

department of pharmacologyLaboratory, Drug Research and Development Center (NPDM), Federal University of Ceará

Email: info@benthamscience.net

Emerson da Silva

department of pharmacologyLaboratory, Drug Research and Development Center (NPDM), Federal University of Ceará

Email: info@benthamscience.net

Pedro Souza

department of pharmacologyLaboratory, Drug Research and Development Center (NPDM), Federal University of Ceará

编辑信件的主要联系方式.
Email: info@benthamscience.net

Maria de Moraes

department of pharmacologyLaboratory, Drug Research and Development Center (NPDM), Federal University of Ceará

Email: info@benthamscience.net

Rommel Burbano

Department of Biological Sciences, Oncology Research Center, Federal University of Para

Email: info@benthamscience.net

Raquel Montenegro

Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med., 2004, 10(8), 789-799. doi: 10.1038/nm1087 PMID: 15286780
  2. Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46. doi: 10.1158/2159-8290.CD-21-1059 PMID: 35022204
  3. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  4. Shlyakhtina, Y.; Moran, K.L.; Portal, M.M. Genetic and non-genetic mechanisms underlying cancer evolution. Cancers, 2021, 13(6), 1380. doi: 10.3390/cancers13061380 PMID: 33803675
  5. Moran, K.L.; Shlyakhtina, Y.; Portal, M.M. The role of non-genetic information in evolutionary frameworks. Crit. Rev. Biochem. Mol. Biol., 2021, 56(3), 255-283. doi: 10.1080/10409238.2021.1908949 PMID: 33970731
  6. Gundem, G.; Van Loo, P.; Kremeyer, B.; Alexandrov, L.B.; Tubio, J.M.C.; Papaemmanuil, E.; Brewer, D.S.; Kallio, H.M.L.; Högnäs, G.; Annala, M.; Kivinummi, K.; Goody, V.; Latimer, C.; O’Meara, S.; Dawson, K.J.; Isaacs, W.; Emmert-Buck, M.R.; Nykter, M.; Foster, C.; Kote-Jarai, Z.; Easton, D.; Whitaker, H.C.; Neal, D.E.; Cooper, C.S.; Eeles, R.A.; Visakorpi, T.; Campbell, P.J.; McDermott, U.; Wedge, D.C.; Bova, G.S. The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520(7547), 353-357. doi: 10.1038/nature14347 PMID: 25830880
  7. Hao, J.J.; Lin, D.C.; Dinh, H.Q.; Mayakonda, A.; Jiang, Y.Y.; Chang, C.; Jiang, Y.; Lu, C.C.; Shi, Z.Z.; Xu, X.; Zhang, Y.; Cai, Y.; Wang, J.W.; Zhan, Q.M.; Wei, W.Q.; Berman, B.P.; Wang, M.R.; Koeffler, H.P. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat. Genet., 2016, 48(12), 1500-1507. doi: 10.1038/ng.3683 PMID: 27749841
  8. Kim, D.W.; Mehra, R.; Tan, D.S.W.; Felip, E.; Chow, L.Q.M.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Sutradhar, S.; Li, S.; Szczudlo, T.; Yovine, A.; Shaw, A.T. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): Updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol., 2016, 17(4), 452-463. doi: 10.1016/S1470-2045(15)00614-2 PMID: 26973324
  9. Li, Y.; Jiang, T.; Zhou, W.; Li, J.; Li, X.; Wang, Q.; Jin, X.; Yin, J.; Chen, L.; Zhang, Y.; Xu, J.; Li, X. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat. Commun., 2020, 11(1), 1000. doi: 10.1038/s41467-020-14802-2 PMID: 32081859
  10. Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M.; Roselló, S.; Fleitas, T.; Roda, D.; Cervantes, A. Personalized medicine: Recent progress in cancer therapy. Cancers, 2020, 12(4), 1009. doi: 10.3390/cancers12041009 PMID: 32325878
  11. Levene, P.A.; Alsberg, C.L. The cleavage products of vitellin. J. Biol. Chem., 1906, 2(1), 127-133. doi: 10.1016/S0021-9258(17)46054-6
  12. Ramazi, S.; Zahiri, J. Post-translational modifications in proteins: Resources, tools and prediction methods. Database, 2021, 2021, baab012. doi: 10.1093/database/baab012 PMID: 33826699
  13. Mongre, R.K.; Mishra, C.B.; Shukla, A.K.; Prakash, A.; Jung, S.; Ashraf-Uz-Zaman, M.; Lee, M.S. Emerging importance of tyrosine kinase inhibitors against cancer: Quo vadis to cure? Int. J. Mol. Sci., 2021, 22(21), 11659. doi: 10.3390/ijms222111659 PMID: 34769090
  14. Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789. doi: 10.1172/JCI76094 PMID: 25932675
  15. Giusti, V.; Ruzzi, F.; Landuzzi, L.; Ianzano, M.L.; Laranga, R.; Nironi, E.; Scalambra, L.; Nicoletti, G.; De Giovanni, C.; Olivero, M.; Arigoni, M.; Calogero, R.; Nanni, P.; Palladini, A.; Lollini, P.L. Evolution of HER2-positive mammary carcinoma: HER2 loss reveals claudin-low traits in cancer progression. Oncogenesis, 2021, 10(11), 77. doi: 10.1038/s41389-021-00360-9 PMID: 34775465
  16. Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; Farjah, F.; Gerdes, H.; Gibson, M.K.; Hochwald, S.; Hofstetter, W.L.; Ilson, D.H.; Keswani, R.N.; Kim, S.; Kleinberg, L.R.; Klempner, S.J.; Lacy, J.; Ly, Q.P.; Matkowskyj, K.A.; McNamara, M.; Mulcahy, M.F.; Outlaw, D.; Park, H.; Perry, K.A.; Pimiento, J.; Poultsides, G.A.; Reznik, S.; Roses, R.E.; Strong, V.E.; Su, S.; Wang, H.L.; Wiesner, G.; Willett, C.G.; Yakoub, D.; Yoon, H.; McMillian, N.; Pluchino, L.A. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2022, 20(2), 167-192. doi: 10.6004/jnccn.2022.0008 PMID: 35130500
  17. Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin., 2021, 71(3), 264-279. doi: 10.3322/caac.21657 PMID: 33592120
  18. Sunakawa, Y.; Lenz, H.J. Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network. Curr. Treat. Options Oncol., 2015, 16(4), 17. doi: 10.1007/s11864-015-0331-y PMID: 25813036
  19. Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.G.; Shapiro, D.N.; Saltman, D.L.; Look, A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1994, 263(5151), 1281-1284. doi: 10.1126/science.8122112 PMID: 8122112
  20. Marusyk, A.; Janiszewska, M.; Polyak, K. Intratumor heterogeneity: The rosetta stone of therapy resistance. Cancer Cell, 2020, 37(4), 471-484. doi: 10.1016/j.ccell.2020.03.007 PMID: 32289271
  21. Böger, C.; Behrens, H.M.; Krüger, S.; Röcken, C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? OncoImmunology, 2017, 6(4), e1293215. doi: 10.1080/2162402X.2017.1293215 PMID: 28507801
  22. Pearson, A.D.J.; Herold, R.; Rousseau, R.; Copland, C.; Bradley-Garelik, B.; Binner, D.; Capdeville, R.; Caron, H.; Carleer, J.; Chesler, L.; Geoerger, B.; Kearns, P.; Marshall, L.V.; Pfister, S.M.; Schleiermacher, G.; Skolnik, J.; Spadoni, C.; Sterba, J.; van den Berg, H.; Uttenreuther-Fischer, M.; Witt, O.; Norga, K.; Vassal, G.; Georger, B.; Iannone, R.; Jakacki, R.; Russo, M. Implementation of mechanism of action biology-driven early drug development for children with cancer. Eur. J. Cancer, 2016, 62, 124-131. doi: 10.1016/j.ejca.2016.04.001 PMID: 27258969
  23. Stahl, J.E.; Dossett, M.L.; LaJoie, A.S.; Denninger, J.W.; Mehta, D.H.; Goldman, R.; Fricchione, G.L.; Benson, H. Relaxation response and resiliency training and its effect on healthcare resource utilization. PLoS One, 2015, 10(10), e0140212. doi: 10.1371/journal.pone.0140212 PMID: 26461184
  24. Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39. doi: 10.1038/nrc2559 PMID: 19104514
  25. Zhang, Z.; Karthaus, W.R.; Lee, Y.S.; Gao, V.R.; Wu, C.; Russo, J.W.; Liu, M.; Mota, J.M.; Abida, W.; Linton, E.; Lee, E.; Barnes, S.D.; Chen, H.A.; Mao, N.; Wongvipat, J.; Choi, D.; Chen, X.; Zhao, H.; Manova-Todorova, K.; de Stanchina, E.; Taplin, M.E.; Balk, S.P.; Rathkopf, D.E.; Gopalan, A.; Carver, B.S.; Mu, P.; Jiang, X.; Watson, P.A.; Sawyers, C.L. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell, 2020, 38(2), 279-296.e9. doi: 10.1016/j.ccell.2020.06.005 PMID: 32679108
  26. Selim, J.H.; Shaheen, S.; Sheu, W.C.; Hsueh, C.T. Targeted and novel therapy in advanced gastric cancer. Exp. Hematol. Oncol., 2019, 8(1), 25. doi: 10.1186/s40164-019-0149-6 PMID: 31632839
  27. Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: An emerging paradigm. Nat. Rev. Clin. Oncol., 2021, 18(8), 473-487. doi: 10.1038/s41571-021-00492-2 PMID: 33790428
  28. Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; Aprile, G.; Kulikov, E.; Hill, J.; Lehle, M.; Rüschoff, J.; Kang, Y.K. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet, 2010, 376(9742), 687-697. doi: 10.1016/S0140-6736(10)61121-X PMID: 20728210
  29. Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; Garrido, M.; Golan, T.; Mandala, M.; Wainberg, Z.A.; Catenacci, D.V.; Ohtsu, A.; Shitara, K.; Geva, R.; Bleeker, J.; Ko, A.H.; Ku, G.; Philip, P.; Enzinger, P.C.; Bang, Y.J.; Levitan, D.; Wang, J.; Rosales, M.; Dalal, R.P.; Yoon, H.H. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol., 2018, 4(5), e180013-e180013. doi: 10.1001/jamaoncol.2018.0013 PMID: 29543932
  30. Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; Uchino, K.; Yasui, H.; Tsukuda, H.; Nishikawa, K.; Ishida, H.; Yamanaka, T.; Yamazaki, K.; Hironaka, S.; Esaki, T.; Boku, N.; Hyodo, I.; Muro, K. Randomized, phase II study of trastuzumab beyond progression in patients with HER2-positive advanced gastric or gastroesophageal junction cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol., 2020, 38(17), 1919-1927. doi: 10.1200/JCO.19.03077 PMID: 32208960
  31. Ho, S.W.T.; Tan, P. Dissection of gastric cancer heterogeneity for precision oncology. Cancer Sci., 2019, 110(11), 3405-3414. doi: 10.1111/cas.14191 PMID: 31495054
  32. Wakatsuki, T.; Yamamoto, N.; Sano, T.; Chin, K.; Kawachi, H.; Takahari, D.; Ogura, M.; Ichimura, T.; Nakayama, I.; Osumi, H.; Matsushima, T.; Suenaga, M.; Shinozaki, E.; Hiki, N.; Ishikawa, Y.; Yamaguchi, K. Clinical impact of intratumoral HER2 heterogeneity on trastuzumab efficacy in patients with HER2-positive gastric cancer. J. Gastroenterol., 2018, 53(11), 1186-1195. doi: 10.1007/s00535-018-1464-0 PMID: 29633013
  33. Lee, J.; Kim, S.T.; Kim, K.; Lee, H.; Kozarewa, I.; Mortimer, P.G.S.; Odegaard, J.I.; Harrington, E.A.; Lee, J.; Lee, T.; Oh, S.Y.; Kang, J.H.; Kim, J.H.; Kim, Y.; Ji, J.H.; Kim, Y.S.; Lee, K.E.; Kim, J.; Sohn, T.S.; An, J.Y.; Choi, M.G.; Lee, J.H.; Bae, J.M.; Kim, S.; Kim, J.J.; Min, Y.W.; Min, B.H.; Kim, N.K.D.; Luke, S.; Kim, Y.H.; Hong, J.Y.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Talasaz, A.; Hollingsworth, S.J.; Kim, K.M.; Kang, W.K. Tumor genomic profiling guides patients with metastatic gastric cancer to targeted treatment: The VIKTORY umbrella trial. Cancer Discov., 2019, 9(10), 1388-1405. doi: 10.1158/2159-8290.CD-19-0442 PMID: 31315834
  34. Röcken, C. Predictive biomarkers in gastric cancer. J. Cancer Res. Clin. Oncol., 2023, 149(1), 467-481. doi: 10.1007/s00432-022-04408-0 PMID: 36260159
  35. Catenacci, D.V.T.; Moya, S.; Lomnicki, S.; Chase, L.M.; Peterson, B.F.; Reizine, N.; Alpert, L.; Setia, N.; Xiao, S.Y.; Hart, J.; Siddiqui, U.D.; Hogarth, D.K.; Eng, O.S.; Turaga, K.; Roggin, K.; Posner, M.C.; Chang, P.; Narula, S.; Rampurwala, M.; Ji, Y.; Karrison, T.; Liao, C.Y.; Polite, B.N.; Kindler, H.L. Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II study evaluating an individualized treatment strategy for metastatic disease. Cancer Discov., 2021, 11(2), 308-325. doi: 10.1158/2159-8290.CD-20-1408 PMID: 33234578
  36. Díaz-Serrano, A.; Angulo, B.; Dominguez, C.; Pazo-Cid, R.; Salud, A.; Jiménez-Fonseca, P.; Leon, A.; Galan, M.C.; Alsina, M.; Rivera, F.; Plaza, J.C.; Paz-Ares, L.; Lopez-Rios, F.; Gómez- Martín, C. Genomic profiling of HER2-Positive gastric cancer: PI3K/Akt/mTOR pathway as predictor of outcomes in HER2-positive advanced gastric cancer treated with trastuzumab. Oncologist, 2018, 23(9), 1092-1102. doi: 10.1634/theoncologist.2017-0379 PMID: 29700210
  37. Farran, B.; Müller, S.; Montenegro, R.C. Gastric cancer management: Kinases as a target therapy. Clin. Exp. Pharmacol. Physiol., 2017, 44(6), 613-622. doi: 10.1111/1440-1681.12743 PMID: 28271563
  38. Mesquita, F.P.; Lucena da Silva, E.; Souza, P.F.N.; Lima, L.B.; Amaral, J.L.; Zuercher, W.; Albuquerque, L.M.; Rabenhorst, S.H.B.; Moreira-Nunes, C.A.; Amaral de Moraes, M.E.; Montenegro, R.C. Kinase inhibitor screening reveals aurora-a kinase is a potential therapeutic and prognostic biomarker of gastric cancer. J. Cell. Biochem., 2021, 122(10), 1376-1388. doi: 10.1002/jcb.30015 PMID: 34160883
  39. Mesquita, F.P.; Moreira-Nunes, C.A.; da Silva, E.L.; Lima, L.B.; Daniel, J.P.; Zuerker, W.J.; Brayner, M.; de Moraes, M.E.A.; Montenegro, R.C. MAPK14 (p38α) inhibition effects against metastatic gastric cancer cells: A potential biomarker and pharmacological target. Toxicol. In Vitro, 2020, 66, 104839. doi: 10.1016/j.tiv.2020.104839 PMID: 32243890
  40. Mesquita, F.P.; Souza, P.F.N.; da Silva, E.L.; Lima, L.B.; de Oliveira, L.L.B.; Moreira-Nunes, C.A.; Zuercher, W.J.; Burbano, R.M.R.; de Moraes, M.E.A.; Montenegro, R.C. Kinase inhibitor screening displayed ALK as a possible therapeutic biomarker for gastric cancer. Pharmaceutics, 2022, 14(9), 1841. doi: 10.3390/pharmaceutics14091841 PMID: 36145589
  41. Morris, S.W.; Naeve, C.; Mathew, P.; James, P.L.; Kirstein, M.N.; Cui, X.; Witte, D.P. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene, 1997, 14(18), 2175-2188. doi: 10.1038/sj.onc.1201062 PMID: 9174053
  42. Chiarle, R.; Voena, C.; Ambrogio, C.; Piva, R.; Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer, 2008, 8(1), 11-23. doi: 10.1038/nrc2291 PMID: 18097461
  43. Wasik, M.A.; Zhang, Q.; Marzec, M.; Kasprzycka, M.; Wang, H.Y.; Liu, X. Anaplastic lymphoma kinase (ALK)-induced malignancies: Novel mechanisms of cell transformation and potential therapeutic approaches. In: Seminars in Oncology; Elsevier, 2009; pp. S27-S35. doi: 10.1053/j.seminoncol.2009.02.007
  44. Yuan, Y.; Liao, Y.M.; Hsueh, C.T.; Mirshahidi, H.R. Novel targeted therapeutics: Inhibitors of MDM2, ALK and PARP. J. Hematol. Oncol., 2011, 4(1), 16. doi: 10.1186/1756-8722-4-16 PMID: 21504625
  45. Iwahara, T.; Fujimoto, J.; Wen, D.; Cupples, R.; Bucay, N.; Arakawa, T.; Mori, S.; Ratzkin, B.; Yamamoto, T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene, 1997, 14(4), 439-449. doi: 10.1038/sj.onc.1200849 PMID: 9053841
  46. Vernersson, E.; Khoo, N.K.S.; Henriksson, M.L.; Roos, G.; Palmer, R.H.; Hallberg, B. Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr. Patterns, 2006, 6(5), 448-461. doi: 10.1016/j.modgep.2005.11.006 PMID: 16458083
  47. Pulford, K.; Lamant, L.; Morris, S.W.; Butler, L.H.; Wood, K.M.; Stroud, D.; Delsol, G.; Mason, D.Y. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood, 1997, 89(4), 1394-1404. doi: 10.1182/blood.V89.4.1394 PMID: 9028963
  48. Yao, S.; Cheng, M.; Zhang, Q.; Wasik, M.; Kelsh, R.; Winkler, C. Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One, 2013, 8(5), e63757. doi: 10.1371/journal.pone.0063757 PMID: 23667670
  49. Uçkun, E.; Wolfstetter, G.; Anthonydhason, V.; Sukumar, S.K.; Umapathy, G.; Molander, L.; Fuchs, J.; Palmer, R.H. In vivo profiling of the Alk proximitome in the developing drosophila brain. J. Mol. Biol., 2021, 433(23), 167282. doi: 10.1016/j.jmb.2021.167282 PMID: 34624297
  50. Park, J.; Choi, H.; Kim, Y.D.; Kim, S.H.; Kim, Y.; Gwon, Y.; Lee, D.Y.; Park, S.H.; Heo, W.D.; Jung, Y.K. Aberrant role of ALK in tau proteinopathy through autophagosomal dysregulation. Mol. Psychiatry, 2021, 26(10), 5542-5556. doi: 10.1038/s41380-020-01003-y PMID: 33452442
  51. Gouzi, J.Y.; Bouraimi, M.; Roussou, I.G.; Moressis, A.; Skoulakis, E.M.C. The drosophila receptor tyrosine kinase alk constrains long-term memory formation. J. Neurosci., 2018, 38(35), 7701-7712. doi: 10.1523/JNEUROSCI.0784-18.2018 PMID: 30030398
  52. Wellstein, A. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front. Oncol., 2012, 2, 192. doi: 10.3389/fonc.2012.00192 PMID: 23267434
  53. Englund, C.; Lorén, C.E.; Grabbe, C.; Varshney, G.K.; Deleuil, F.; Hallberg, B.; Palmer, R.H. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature, 2003, 425(6957), 512-516. doi: 10.1038/nature01950 PMID: 14523447
  54. Stute, C.; Schimmelpfeng, K.; Renkawitz-Pohl, R.; Palmer, R.H.; Holz, A. Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways ( mili Alk ) as receptor for Jeb signalling. Development, 2004, 131(4), 743-754. doi: 10.1242/dev.00972 PMID: 14757637
  55. Ishihara, T.; Iino, Y.; Mohri, A.; Mori, I.; Gengyo-Ando, K.; Mitani, S.; Katsura, I. HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell, 2002, 109(5), 639-649. doi: 10.1016/S0092-8674(02)00748-1 PMID: 12062106
  56. Owada, K.; Sanjo, N.; Kobayashi, T.; Mizusawa, H.; Muramatsu, H.; Muramatsu, T.; Michikawa, M. Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J. Neurochem., 1999, 73(5), 2084-2092. doi: 10.1046/j.1471-4159.1999.02084.x PMID: 10537068
  57. Maeda, N.; Ichihara-Tanaka, K.; Kimura, T.; Kadomatsu, K.; Muramatsu, T.; Noda, M. A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J. Biol. Chem., 1999, 274(18), 12474-12479. doi: 10.1074/jbc.274.18.12474 PMID: 10212223
  58. Mitsiadis, T.A.; Salmivirta, M.; Muramatsu, T.; Muramatsu, H.; Rauvala, H.; Lehtonen, E.; Jalkanen, M.; Thesleff, I. Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development, 1995, 121(1), 37-51. doi: 10.1242/dev.121.1.37 PMID: 7867507
  59. Wang, S.; Yoshida, Y.; Goto, M.; Moritoyo, T.; Tsutsui, J.; Izumo, S.; Sato, E.; Muramatsu, T.; Osame, M. Midkine exists in astrocytes in the early stage of cerebral infarction. Brain Res. Dev. Brain Res., 1998, 106(1-2), 205-209. doi: 10.1016/S0165-3806(97)00213-7 PMID: 9555016
  60. Zhang, L.; Rees, M.C.P.; Bicknell, R. The isolation and long-term culture of normal human endometrial epithelium and stroma: Expression of mRNAs for angiogenic polypeptides basally and on oestrogen and progesterone challenges. J. Cell Sci., 1995, 108(1), 323-331. doi: 10.1242/jcs.108.1.323 PMID: 7537745
  61. Zhang, H.; Pao, L.I.; Zhou, A.; Brace, A.D.; Halenbeck, R.; Hsu, A.W.; Bray, T.L.; Hestir, K.; Bosch, E.; Lee, E.; Wang, G.; Liu, H.; Wong, B.R.; Kavanaugh, W.M.; Williams, L.T. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome. Proc. Natl. Acad. Sci., 2014, 111(44), 15741-15745. doi: 10.1073/pnas.1412009111 PMID: 25331893
  62. Guan, J.; Umapathy, G.; Yamazaki, Y.; Wolfstetter, G.; Mendoza, P.; Pfeifer, K.; Mohammed, A.; Hugosson, F.; Zhang, H.; Hsu, A.W.; Halenbeck, R.; Hallberg, B.; Palmer, R.H. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife, 2015, 4, e09811. doi: 10.7554/eLife.09811 PMID: 26418745
  63. Mendoza-García, P.; Hugosson, F.; Fallah, M.; Higgins, M.L.; Iwasaki, Y.; Pfeifer, K.; Wolfstetter, G.; Varshney, G.; Popichenko, D.; Gergen, J.P.; Hens, K.; Deplancke, B.; Palmer, R.H. The Zic family homologue Odd-paired regulates Alk expression in Drosophila. PLoS Genet., 2017, 13(4), e1006617. doi: 10.1371/journal.pgen.1006617 PMID: 28369060
  64. Bachetti, T.; Di Paolo, D.; Di Lascio, S.; Mirisola, V.; Brignole, C.; Bellotti, M.; Caffa, I.; Ferraris, C.; Fiore, M.; Fornasari, D.; Chiarle, R.; Borghini, S.; Pfeffer, U.; Ponzoni, M.; Ceccherini, I.; Perri, P. PHOX2B-mediated regulation of ALK expression: In vitro identification of a functional relationship between two genes involved in neuroblastoma. PLoS One, 2010, 5(10), e13108. doi: 10.1371/journal.pone.0013108 PMID: 20957039
  65. Hasan, M.K.; Nafady, A.; Takatori, A.; Kishida, S.; Ohira, M.; Suenaga, Y.; Hossain, S.; Akter, J.; Ogura, A.; Nakamura, Y.; Kadomatsu, K.; Nakagawara, A. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma. Sci. Rep., 2013, 3(1), 3450. doi: 10.1038/srep03450 PMID: 24356251
  66. Ke, X.X.; Zhang, D.; Zhao, H.; Hu, R.; Dong, Z.; Yang, R.; Zhu, S.; Xia, Q.; Ding, H.F.; Cui, H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol. Lett., 2015, 9(6), 2507-2514. doi: 10.3892/ol.2015.3088 PMID: 26137098
  67. Ke, C.; Shi, X.; Chen, A.M.; Li, C.; Jiang, B.; Huang, K.; Zheng, Z.; Liu, Y.; Chen, Z.; Luo, Y.; Lin, H.; Zhang, J. Novel PHOX2B germline mutation in childhood medulloblastoma: A case report. Hered. Cancer Clin. Pract., 2021, 19(1), 12. doi: 10.1186/s13053-021-00170-5 PMID: 33468206
  68. Liu, Z.; Chen, S.S.; Clarke, S.; Veschi, V.; Thiele, C.J. Targeting MYCN in pediatric and adult cancers. Front. Oncol., 2021, 10, 623679. doi: 10.3389/fonc.2020.623679 PMID: 33628735
  69. Liu, R.; Shi, P.; Wang, Z.; Yuan, C.; Cui, H. Molecular mechanisms of MYCN dysregulation in cancers. Front. Oncol., 2021, 10, 625332. doi: 10.3389/fonc.2020.625332 PMID: 33614505
  70. Williamson, D.; Lu, Y.J.; Gordon, T.; Sciot, R.; Kelsey, A.; Fisher, C.; Poremba, C.; Anderson, J.; Pritchard-Jones, K.; Shipley, J. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol., 2005, 23(4), 880-888. doi: 10.1200/JCO.2005.11.078 PMID: 15681534
  71. Ratti, M.; Lampis, A.; Ghidini, M.; Salati, M.; Mirchev, M.B.; Valeri, N.; Hahne, J.C. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target. Oncol., 2020, 15(3), 261-278. doi: 10.1007/s11523-020-00717-x PMID: 32451752
  72. Vishwamitra, D.; Li, Y.; Wilson, D.; Manshouri, R.; Curry, C.V.; Shi, B.; Tang, X.M.; Sheehan, A.M.; Wistuba, I.I.; Shi, P.; Amin, H.M.; Micro, R.N.A. MicroRNA 96 is a post-transcriptional suppressor of anaplastic lymphoma kinase expression. Am. J. Pathol., 2012, 180(5), 1772-1780. doi: 10.1016/j.ajpath.2012.01.008 PMID: 22414602
  73. Li, L.L.; Qu, L.L.; Fu, H.J.; Zheng, X.F.; Tang, C.H.; Li, X.Y.; Chen, J.; Wang, W.X.; Yang, S.X.; Wang, L.; Zhao, G.H.; Lv, P.P.; Zhang, M.; Lei, Y.Y.; Qin, H.F.; Wang, H.; Gao, H.J.; Liu, X.Q. Circulating microRNAs as novel biomarkers of ALK-positive non-small cell lung cancer and predictors of response to crizotinib therapy. Oncotarget, 2017, 8(28), 45399-45414. doi: 10.18632/oncotarget.17535 PMID: 28514730
  74. Merkel, O.; Hamacher, F.; Laimer, D.; Sifft, E.; Trajanoski, Z.; Scheideler, M.; Egger, G.; Hassler, M.R.; Thallinger, C.; Schmatz, A.; Turner, S.D.; Greil, R.; Kenner, L. Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK) + and ALK − anaplastic large-cell lymphoma. Proc. Natl. Acad. Sci., 2010, 107(37), 16228-16233. doi: 10.1073/pnas.1009719107 PMID: 20805506
  75. Fuchs, S.; Naderi, J.; Meggetto, F. Non-coding RNA networks in alk-positive anaplastic-large cell lymphoma. Int. J. Mol. Sci., 2019, 20(9), 2150. doi: 10.3390/ijms20092150 PMID: 31052302
  76. Du, X.; Shao, Y.; Qin, H.F.; Tai, Y.H.; Gao, H.J. ALK- rearrangement in non-small-cell lung cancer (NSCLC). Thorac. Cancer, 2018, 9(4), 423-430. doi: 10.1111/1759-7714.12613 PMID: 29488330
  77. Schoppmann, S.F.; Streubel, B.; Birner, P. Amplification but not translocation of anaplastic lymphoma kinase is a frequent event in oesophageal cancer. Eur. J. Cancer, 2013, 49(8), 1876-1881. doi: 10.1016/j.ejca.2013.02.005 PMID: 23490651
  78. Zito Marino, F.; Botti, G.; Aquino, G.; Ferrero, S.; Gaudioso, G.; Palleschi, A.; Rocco, D.; Salvi, R.; Micheli, M.C.; Micheli, P.; Morabito, A.; Rocco, G.; Giordano, A.; De Cecio, R.; Franco, R. Unproductive effects of alk gene amplification and copy number gain in non-small-cell lung cancer. Alk gene amplification and copy gain in nsclc. Int. J. Mol. Sci., 2020, 21(14), 4927. doi: 10.3390/ijms21144927 PMID: 32664698
  79. Boi, M.; Zucca, E.; Inghirami, G.; Bertoni, F. Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas. Br. J. Haematol., 2015, 168(6), 771-783. doi: 10.1111/bjh.13265 PMID: 25559471
  80. André, F.; Arnedos, M.; Baras, A.S.; Baselga, J.; Bedard, P.L.; Berger, M.F.; Bierkens, M.; Calvo, F.; Cerami, E.; Chakravarty, D.; Dang, K.K.; Davidson, N.E.; Del Vecchio Fitz, C.; Dogan, S.; DuBois, R.N.; Ducar, M.D.; Futreal, P.A.; Gao, J.; Garcia, F.; Gardos, S.; Gocke, C.D.; Gross, B.E.; Guinney, J.; Heins, Z.J.; Hintzen, S.; Horlings, H.; Hudeček, J.; Hyman, D.M.; Kamel-Reid, S.; Kandoth, C.; Kinyua, W.; Kumari, P.; Kundra, R.; Ladanyi, M.; Lefebvre, C.; LeNoue-Newton, M.L.; Lepisto, E.M.; Levy, M.A.; Lindeman, N.I.; Lindsay, J.; Liu, D.; Lu, Z.; MacConaill, L.E.; Maurer, I.; Maxwell, D.S.; Meijer, G.A.; Meric-Bernstam, F.; Micheel, C.M.; Miller, C.; Mills, G.; Moore, N.D.; Nederlof, P.M.; Omberg, L.; Orechia, J.A.; Park, B.H.; Pugh, T.J.; Reardon, B.; Rollins, B.J.; Routbort, M.J.; Sawyers, C.L.; Schrag, D.; Schultz, N.; Shaw, K.R.M.; Shivdasani, P.; Siu, L.L.; Solit, D.B.; Sonke, G.S.; Soria, J.C.; Sripakdeevong, P.; Stickle, N.H.; Stricker, T.P.; Sweeney, S.M.; Taylor, B.S.; ten Hoeve, J.J.; Thomas, S.B.; Van Allen, E.M.; Van 'T Veer, L.J.; van de Velde, T.; van Tinteren, H.; Velculescu, V.E.; Virtanen, C.; Voest, E.E.; Wang, L.L.; Wathoo, C.; Watt, S.; Yu, C.; Yu, T.V.; Yu, E.; Zehir, A.; Zhang, H. AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discov., 2017, 7(8), 818-831. doi: 10.1158/2159-8290.CD-17-0151 PMID: 28572459
  81. Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Fasano, M.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Morgillo, F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer, 2018, 17(1), 30. doi: 10.1186/s12943-018-0776-2 PMID: 29455642
  82. Yang, Y.; Wu, N.; Shen, J.; Teixido, C.; Sun, X.; Lin, Z.; Qian, X.; Zou, Z.; Guan, W.; Yu, L.; Rosell, R.; Liu, B.; Wei, J. MET overexpression and amplification define a distinct molecular subgroup for targeted therapies in gastric cancer. Gastric Cancer, 2016, 19(3), 778-788. doi: 10.1007/s10120-015-0545-5 PMID: 26404902
  83. Shiota, M.; Fujimoto, J.; Semba, T.; Satoh, H.; Yamamoto, T.; Mori, S. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene, 1994, 9(6), 1567-1574. PMID: 8183550
  84. Bischof, D.; Pulford, K.; Mason, D.Y.; Morris, S.W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell. Biol., 1997, 17(4), 2312-2325. doi: 10.1128/MCB.17.4.2312 PMID: 9121481
  85. Hofman, P. ALK in non-small cell lung cancer (NSCLC) pathobiology, epidemiology, detection from tumor tissue and algorithm diagnosis in a daily practice. Cancers, 2017, 9(12), 107. doi: 10.3390/cancers9080107 PMID: 28805682
  86. Kim, H.; Chung, J-H. Overview of clinicopathologic features of ALK-rearranged lung adenocarcinoma and current diagnostic testing for ALK rearrangement. Transl. Lung Cancer Res., 2015, 4(2), 149-155. PMID: 25870797
  87. Franco, R.; Rocco, G.; Marino, F.Z.; Pirozzi, G.; Normanno, N.; Morabito, A.; Sperlongano, P.; Stiuso, P.; Luce, A.; Botti, G.; Caraglia, M. Anaplastic lymphoma kinase: A glimmer of hope in lung cancer treatment? Expert Rev. Anticancer Ther., 2013, 13(4), 407-420. doi: 10.1586/era.13.18 PMID: 23560836
  88. Roskoski, R., Jr Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition. Pharmacol. Res., 2013, 68(1), 68-94. doi: 10.1016/j.phrs.2012.11.007 PMID: 23201355
  89. Marzec, M.; Kasprzycka, M.; Liu, X.; El-Salem, M.; Halasa, K.; Raghunath, P.N.; Bucki, R.; Wlodarski, P.; Wasik, M.A. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene, 2007, 26(38), 5606-5614. doi: 10.1038/sj.onc.1210346 PMID: 17353907
  90. Kasprzycka, M.; Marzec, M.; Liu, X.; Zhang, Q.; Wasik, M.A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl. Acad. Sci., 2006, 103(26), 9964-9969. doi: 10.1073/pnas.0603507103 PMID: 16766651
  91. Andraos, E.; Dignac, J.; Meggetto, F. NPM-ALK: A driver of lymphoma pathogenesis and a therapeutic target. Cancers, 2021, 13(1), 144. doi: 10.3390/cancers13010144 PMID: 33466277
  92. Bang, Y.J. Treatment of ALK-positive non-small cell lung cancer. Arch. Pathol. Lab. Med., 2012, 136(10), 1201-1204. doi: 10.5858/arpa.2012-0246-RA PMID: 23020724
  93. Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566. doi: 10.1038/nature05945 PMID: 17625570
  94. Shaw, A.T.; Yeap, B.Y.; Solomon, B.J.; Riely, G.J.; Gainor, J.; Engelman, J.A.; Shapiro, G.I.; Costa, D.B.; Ou, S.H.I.; Butaney, M.; Salgia, R.; Maki, R.G.; Varella-Garcia, M.; Doebele, R.C.; Bang, Y.J.; Kulig, K.; Selaru, P.; Tang, Y.; Wilner, K.D.; Kwak, E.L.; Clark, J.W.; Iafrate, A.J.; Camidge, D.R. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: A retrospective analysis. Lancet Oncol., 2011, 12(11), 1004-1012. doi: 10.1016/S1470-2045(11)70232-7 PMID: 21933749
  95. Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell, 2011, 19(5), 679-690. doi: 10.1016/j.ccr.2011.04.004 PMID: 21575866
  96. Soria, J.C.; Tan, D.S.W.; Chiari, R.; Wu, Y.L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.J.; Hochmair, M.; Cortot, A.B.; Tsai, C.M.; Moro-Sibilot, D.; Campelo, R.G.; McCulloch, T.; Sen, P.; Dugan, M.; Pantano, S.; Branle, F.; Massacesi, C.; de Castro, G., Jr First-line ceritinib versus platinum-based chemotherapy in advanced ALK -rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet, 2017, 389(10072), 917-929. doi: 10.1016/S0140-6736(17)30123-X PMID: 28126333
  97. Yanagitani, N.; Uchibori, K.; Koike, S.; Tsukahara, M.; Kitazono, S.; Yoshizawa, T.; Horiike, A.; Ohyanagi, F.; Tambo, Y.; Nishikawa, S.; Fujita, N.; Katayama, R.; Nishio, M. Drug resistance mechanisms in Japanese anaplastic lymphoma kinase-positive non–small cell lung cancer and the clinical responses based on the resistant mechanisms. Cancer Sci., 2020, 111(3), 932-939. doi: 10.1111/cas.14314 PMID: 31961053
  98. Makimoto, G.; Ohashi, K.; Tomida, S.; Nishii, K.; Matsubara, T.; Kayatani, H.; Higo, H.; Ninomiya, K.; Sato, A.; Watanabe, H.; Kano, H.; Ninomiya, T.; Kubo, T.; Rai, K.; Ichihara, E.; Hotta, K.; Tabata, M.; Toyooka, S.; Takata, M.; Maeda, Y.; Kiura, K. Rapid acquisition of alectinib resistance in ALK-positive lung cancer with high tumor mutation burden. J. Thorac. Oncol., 2019, 14(11), 2009-2018. doi: 10.1016/j.jtho.2019.07.017 PMID: 31374369
  99. Huber, R.M.; Hansen, K.H.; Paz-Ares Rodríguez, L.; West, H.L.; Reckamp, K.L.; Leighl, N.B.; Tiseo, M.; Smit, E.F.; Kim, D.W.; Gettinger, S.N.; Hochmair, M.J.; Kim, S.W.; Langer, C.J.; Ahn, M.J.; Kim, E.S.; Kerstein, D.; Groen, H.J.M.; Camidge, D.R. Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes in the phase 2 ALTA trial. J. Thorac. Oncol., 2020, 15(3), 404-415. doi: 10.1016/j.jtho.2019.11.004 PMID: 31756496
  100. Zhang, S.; Anjum, R.; Squillace, R.; Nadworny, S.; Zhou, T.; Keats, J.; Ning, Y.; Wardwell, S.D.; Miller, D.; Song, Y.; Eichinger, L.; Moran, L.; Huang, W.S.; Liu, S.; Zou, D.; Wang, Y.; Mohemmad, Q.; Jang, H.G.; Ye, E.; Narasimhan, N.; Wang, F.; Miret, J.; Zhu, X.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Rivera, V.M. The Potent ALK Inhibitor Brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res., 2016, 22(22), 5527-5538. doi: 10.1158/1078-0432.CCR-16-0569 PMID: 27780853
  101. Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; Garcia Campelo, M.R.; Kim, D.W.; Griesinger, F.; Felip, E.; Califano, R.; Spira, A.I.; Gettinger, S.N.; Tiseo, M.; Lin, H.M.; Liu, Y.; Vranceanu, F.; Niu, H.; Zhang, P.; Popat, S. Brigatinib versus crizotinib in ALK inhibitor-naive advanced ALK-positive NSCLC: Final results of phase 3 ALTA-1L trial. J. Thorac. Oncol., 2021, 16(12), 2091-2108. doi: 10.1016/j.jtho.2021.07.035 PMID: 34537440
  102. Dagogo-Jack, I.; Rooney, M.; Lin, J.J.; Nagy, R.J.; Yeap, B.Y.; Hubbeling, H.; Chin, E.; Ackil, J.; Farago, A.F.; Hata, A.N.; Lennerz, J.K.; Gainor, J.F.; Lanman, R.B.; Shaw, A.T. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin. Cancer Res., 2019, 25(22), 6662-6670. doi: 10.1158/1078-0432.CCR-19-1436 PMID: 31358542
  103. Gainor, J.F.; Dardaei, L.; Yoda, S.; Friboulet, L.; Leshchiner, I.; Katayama, R.; Dagogo-Jack, I.; Gadgeel, S.; Schultz, K.; Singh, M.; Chin, E.; Parks, M.; Lee, D.; DiCecca, R.H.; Lockerman, E.; Huynh, T.; Logan, J.; Ritterhouse, L.L.; Le, L.P.; Muniappan, A.; Digumarthy, S.; Channick, C.; Keyes, C.; Getz, G.; Dias-Santagata, D.; Heist, R.S.; Lennerz, J.; Sequist, L.V.; Benes, C.H.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A.; Shaw, A.T. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK -rearranged lung cancer. Cancer Discov., 2016, 6(10), 1118-1133. doi: 10.1158/2159-8290.CD-16-0596 PMID: 27432227
  104. Sabari, J.K.; Santini, F.; Schram, A.M.; Bergagnini, I.; Chen, R.; Mrad, C.; Lai, W.V.; Arbour, K.C.; Drilon, A. The activity, safety, and evolving role of brigatinib in patients with ALK-rearranged non-small cell lung cancers. OncoTargets Ther., 2017, 10, 1983-1992. doi: 10.2147/OTT.S109295 PMID: 28435288
  105. Crinò, L.; Ahn, M.J.; De Marinis, F.; Groen, H.J.M.; Wakelee, H.; Hida, T.; Mok, T.; Spigel, D.; Felip, E.; Nishio, M.; Scagliotti, G.; Branle, F.; Emeremni, C.; Quadrigli, M.; Zhang, J.; Shaw, A.T. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK -rearranged non–small-cell lung cancer previously treated with chemotherapy and crizotinib: Results from ASCEND-2. J. Clin. Oncol., 2016, 34(24), 2866-2873. doi: 10.1200/JCO.2015.65.5936 PMID: 27432917
  106. Cho, B.C.; Obermannova, R.; Bearz, A.; McKeage, M.; Kim, D.W.; Batra, U.; Borra, G.; Orlov, S.; Kim, S.W.; Geater, S.L.; Postmus, P.E.; Laurie, S.A.; Park, K.; Yang, C.T.; Ardizzoni, A.; Bettini, A.C.; de Castro, G., Jr; Kiertsman, F.; Chen, Z.; Lau, Y.Y.; Viraswami-Appanna, K.; Passos, V.Q.; Dziadziuszko, R. Efficacy and safety of ceritinib (450 mg/d or 600 mg/d) with food versus 750-mg/d fasted in patients with ALK receptor tyrosine kinase (ALK)–positive NSCLC: Primary efficacy results from the ASCEND-8 study. J. Thorac. Oncol., 2019, 14(7), 1255-1265. doi: 10.1016/j.jtho.2019.03.002 PMID: 30851442
  107. Mehlman, C.; Chaabane, N.; Lacave, R.; Kerrou, K.; Ruppert, A.M.; Cadranel, J.; Fallet, V.; Ceritinib, A.L.K. Ceritinib ALK T1151R resistance mutation in lung cancer with initial response to brigatinib. J. Thorac. Oncol., 2019, 14(5), e95-e96. doi: 10.1016/j.jtho.2018.12.036 PMID: 31027750
  108. Zhu, V.W.; Cui, J.J.; Fernandez-Rocha, M.; Schrock, A.B.; Ali, S.M.; Ou, S.H.I. Identification of a novel T1151K ALK mutation in a patient with ALK -rearranged NSCLC with prior exposure to crizotinib and ceritinib. Lung Cancer, 2017, 110, 32-34. doi: 10.1016/j.lungcan.2017.05.018 PMID: 28676215
  109. Zou, H.Y.; Friboulet, L.; Kodack, D.P.; Engstrom, L.D.; Li, Q.; West, M.; Tang, R.W.; Wang, H.; Tsaparikos, K.; Wang, J.; Timofeevski, S.; Katayama, R.; Dinh, D.M.; Lam, H.; Lam, J.L.; Yamazaki, S.; Hu, W.; Patel, B.; Bezwada, D.; Frias, R.L.; Lifshits, E.; Mahmood, S.; Gainor, J.F.; Affolter, T.; Lappin, P.B.; Gukasyan, H.; Lee, N.; Deng, S.; Jain, R.K.; Johnson, T.W.; Shaw, A.T.; Fantin, V.R.; Smeal, T. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell, 2015, 28(1), 70-81. doi: 10.1016/j.ccell.2015.05.010 PMID: 26144315
  110. Basit, S.; Ashraf, Z.; Lee, K.; Latif, M. First macrocyclic 3 rd -generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur. J. Med. Chem., 2017, 134, 348-356. doi: 10.1016/j.ejmech.2017.04.032 PMID: 28431340
  111. Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.-W.; Mok, T.; Polli, A.; Thurm, H.; Calella, A.M.; Peltz, G.; Solomon, B.J. Solomon, first-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. New England J. Med., 2020, 383, 2018-2029. doi: 10.1056/NEJMoa2027187
  112. Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; Iyer, S.; Reisman, A.; Wilner, K.D.; Tursi, J.; Blackhall, F. First-line crizotinib Versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2014, 371(23), 2167-2177. doi: 10.1056/NEJMoa1408440 PMID: 25470694
  113. Recondo, G.; Mezquita, L.; Facchinetti, F.; Planchard, D.; Gazzah, A.; Bigot, L.; Rizvi, A.Z.; Frias, R.L.; Thiery, J.P.; Scoazec, J.Y.; Sourisseau, T.; Howarth, K.; Deas, O.; Samofalova, D.; Galissant, J.; Tesson, P.; Braye, F.; Naltet, C.; Lavaud, P.; Mahjoubi, L.; Abou Lovergne, A.; Vassal, G.; Bahleda, R.; Hollebecque, A.; Nicotra, C.; Ngo-Camus, M.; Michiels, S.; Lacroix, L.; Richon, C.; Auger, N.; De Baere, T.; Tselikas, L.; Solary, E.; Angevin, E.; Eggermont, A.M.; Andre, F.; Massard, C.; Olaussen, K.A.; Soria, J.C.; Besse, B.; Friboulet, L. Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clin. Cancer Res., 2020, 26(1), 242-255. doi: 10.1158/1078-0432.CCR-19-1104 PMID: 31585938
  114. Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38. doi: 10.1186/s12943-018-0777-1 PMID: 29455650
  115. Takahashi, K.; Seto, Y.; Okada, K.; Uematsu, S.; Uchibori, K.; Tsukahara, M.; Oh-hara, T.; Fujita, N.; Yanagitani, N.; Nishio, M.; Okubo, K.; Katayama, R. Overcoming resistance by ALK compound mutation (I1171S + G1269A) after sequential treatment of multiple ALK inhibitors in non-small cell lung cancer. Thorac. Cancer, 2020, 11(3), 581-587. doi: 10.1111/1759-7714.13299 PMID: 31943796
  116. Sharma, G.G.; Cortinovis, D.; Agustoni, F.; Arosio, G.; Villa, M.; Cordani, N.; Bidoli, P.; Bisson, W.H.; Pagni, F.; Piazza, R.; Gambacorti-Passerini, C.; Mologni, L.; Compound, A. A Compound L1196M/G1202R ALK mutation in a patient with ALK-positive lung cancer with acquired resistance to brigatinib also confers primary resistance to lorlatinib. J. Thorac. Oncol., 2019, 14(11), e257-e259. doi: 10.1016/j.jtho.2019.06.028 PMID: 31668326
  117. Makuuchi, Y.; Hayashi, H.; Haratani, K.; Tanizaki, J.; Tanaka, K.; Takeda, M.; Sakai, K.; Shimizu, S.; Ito, A.; Nishio, K.; Nakagawa, K. A case of ALK -rearranged non-small cell lung cancer that responded to ceritinib after development of resistance to alectinib. Oncotarget, 2018, 9(33), 23315-23319. doi: 10.18632/oncotarget.25143 PMID: 29796191
  118. COSMIC. Available from:https://cancer.sanger.ac.uk/cosmic (Accessed May 17, 2023).
  119. Machlowska, J.; Kapusta, P.; Baj, J.; Morsink, F.H.M.; Wołkow, P.; Maciejewski, R.; Offerhaus, G.J.A.; Sitarz, R. High-throughput sequencing of gastric cancer patients: Unravelling genetic predispositions towards an early-onset subtype. Cancers, 2020, 12(7), 1981. doi: 10.3390/cancers12071981 PMID: 32708070
  120. Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer, 2018, 17(1), 36. doi: 10.1186/s12943-018-0801-5 PMID: 29455664
  121. Ou, S.H.I.; Zhu, V.W.; Nagasaka, M. Catalog of 5’fusion partners in ALK-positive NSCLC circa 2020. JTO Clin. Res. Report, 2020, 1(1), 100015. doi: 10.1016/j.jtocrr.2020.100015 PMID: 34589917
  122. Shinmura, K.; Kageyama, S.; Igarashi, H.; Kamo, T.; Mochizuki, T.; Suzuki, K.; Tanahashi, M.; Niwa, H.; Ogawa, H.; Sugimura, H. EML4-ALK fusion transcripts in immunohistochemically ALK-positive non-small cell lung carcinomas. Exp. Ther. Med., 2010, 1(2), 271-275. doi: 10.3892/etm_00000042 PMID: 22993539
  123. Chon, H.J.; Kim, H.R.; Shin, E.; Kim, C.; Heo, S.J.; Lee, C.-K.; Park, J.K.; Noh, S.H.; Chung, H.C.; Rha, S.Y. The clinicopathologic features and prognostic impact of ALK positivity in patients with resected gastric cancer. Annal. Surg. Oncol., 2015, 22, 3938-3945. doi: 10.1245/s10434-015-4376-8
  124. Zhao, R.; Jiang, W.; Li, X.; Zhang, W.; Song, L.; Chang, Z.; Cao, W.; Cao, X.; Zong, H. Anaplastic lymphoma kinase (ALK) gene alteration in gastric signet ring cell carcinoma. Cancer Biomark., 2016, 16(4), 569-574. doi: 10.3233/CBM-160599 PMID: 27002760
  125. Alese, O.B.; El-Rayes, B.F.; Sica, G.; Zhang, G.; Alexis, D.; La Rosa, F.G.; Varella-Garcia, M.; Chen, Z.; Rossi, M.R.; Adsay, N.V.; Khuri, F.R.; Owonikoko, T.K. Anaplastic lymphoma kinase (ALK) gene alteration in signet ring cell carcinoma of the gastrointestinal tract. Ther. Adv. Med. Oncol., 2015, 7(2), 56-62. doi: 10.1177/1758834014567117 PMID: 25755678
  126. Glückstein, M.-I.; Dintner, S.; Miller, S.; Vlasenko, D.; Schenkirsch, G.; Agaimy, A.; Märkl, B.; Grosser, B. Grosser, ALK, NUT, and TRK do not play relevant roles in gastric cancer-results of an immunohistochemical study in a large series. Diagnostics, 2022, 12, 429. doi: 10.3390/diagnostics12020429
  127. Wen, Z.; Xiong, D.; Zhang, S.; Liu, J.; Li, B.; Li, R.; Zhang, H. Case report: RAB10-ALK: A novel ALK fusion in a patient with gastric cancer. Front. Oncol., 2021, 11, 645370. doi: 10.3389/fonc.2021.645370 PMID: 33692962
  128. Murakami, K.; Terakado, Y.; Saito, K.; Jomen, Y.; Takeda, H.; Oshima, M.; Barker, N. A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proc. Natl. Acad. Sci., 2021, 118(4), e2016806118. doi: 10.1073/pnas.2016806118 PMID: 33479180
  129. Sa, J.K.; Hong, J.Y.; Lee, I.K.; Kim, J.; Sim, M.H.; Kim, H.J.; An, J.Y.; Sohn, T.S.; Lee, J.H.; Bae, J.M.; Kim, S.; Kim, K.M.; Kim, S.T.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Her, N.G.; Lee, Y.; Cho, H.J.; Shin, Y.J.; Kim, M.; Koo, H.; Kim, M.; Seo, Y.J.; Kim, J.Y.; Choi, M.G.; Nam, D.H.; Lee, J. Comprehensive pharmacogenomic characterization of gastric cancer. Genome Med., 2020, 12(1), 17. doi: 10.1186/s13073-020-0717-8 PMID: 32070411
  130. Ribeiro, I.P.; Melo, J.B.; Carreira, I.M. Cytogenetics and cytogenomics evaluation in cancer. Int. J. Mol. Sci., 2019, 20, 4711. doi: 10.3390/ijms20194711
  131. Dong, Y.; Song, N.; Wang, J.; Shi, L.; Zhang, Z.; Du, J. Driver gene alterations in malignant progression of gastric cancer. Front. Oncol., 2022, 12, 920207. doi: 10.3389/fonc.2022.920207 PMID: 35903675
  132. Maleki, S.S.; Röcken, C. Chromosomal instability in gastric cancer biology. Neoplasia, 2017, 19(5), 412-420. doi: 10.1016/j.neo.2017.02.012 PMID: 28431273
  133. Ambrosini, M.; Del Re, M.; Manca, P.; Hendifar, A.; Drilon, A.; Harada, G.; Ree, A.H.; Klempner, S.; Mælandsmo, G.M.; Flatmark, K.; Russnes, H.G.; Cleary, J.M.; Singh, H.; Sottotetti, E.; Martinetti, A.; Randon, G.; Sartore-Bianchi, A.; Capone, I.; Milione, M.; Di Bartolomeo, M.; Pietrantonio, F. ALK inhibitors in patients with ALK fusion-positive GI cancers: An international data set and a molecular case series. JCO Precis. Oncol., 2022, 6(6), e2200015. doi: 10.1200/PO.22.00015 PMID: 35476549
  134. Sf, S. Amplification but not translocation of anaplastic lymphoma kinase is a frequent event in oesophageal cancer. Europ. J. Cancer, 2013, 49(8), 1876-81. doi: 10.1016/j.ejca.2013.02.005
  135. Bellini, A.; Pötschger, U.; Bernard, V.; Lapouble, E.; Baulande, S.; Ambros, P.F.; Auger, N.; Beiske, K.; Bernkopf, M.; Betts, D.R.; Bhalshankar, J.; Bown, N.; de Preter, K.; Clément, N.; Combaret, V.; Font de Mora, J.; George, S.L.; Jiménez, I.; Jeison, M.; Marques, B.; Martinsson, T.; Mazzocco, K.; Morini, M.; Mühlethaler-Mottet, A.; Noguera, R.; Pierron, G.; Rossing, M.; Taschner-Mandl, S.; Van Roy, N.; Vicha, A.; Chesler, L.; Balwierz, W.; Castel, V.; Elliott, M.; Kogner, P.; Laureys, G.; Luksch, R.; Malis, J.; Popovic-Beck, M.; Ash, S.; Delattre, O.; Valteau-Couanet, D.; Tweddle, D.A.; Ladenstein, R.; Schleiermacher, G. Frequency and prognostic impact of ALK amplifications and mutations in the european neuroblastoma Study Group (SIOPEN) high-risk neuroblastoma Trial (HR-NBL1). J. Clin. Oncol., 2021, 39(30), 3377-3390. doi: 10.1200/JCO.21.00086 PMID: 34115544
  136. Bresler, S.C.; Weiser, D.A.; Huwe, P.J.; Park, J.H.; Krytska, K.; Ryles, H.; Laudenslager, M.; Rappaport, E.F.; Wood, A.C.; McGrady, P.W.; Hogarty, M.D.; London, W.B.; Radhakrishnan, R.; Lemmon, M.A.; Mossé, Y.P. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell, 2014, 26(5), 682-694. doi: 10.1016/j.ccell.2014.09.019 PMID: 25517749
  137. Montavon, G.; Jauquier, N.; Coulon, A.; Peuchmaur, M.; Flahaut, M.; Bourloud, K.B.; Yan, P.; Delattre, O.; Sommer, L.; Joseph, J.M.; Janoueix-Lerosey, I.; Gross, N.; Mühlethaler-Mottet, A. Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget, 2014, 5(12), 4452-4466. doi: 10.18632/oncotarget.2036 PMID: 24947326
  138. Zhang, B.; Tavaré, J.M.; Ellis, L.; Roth, R.A. The regulatory role of known tyrosine autophosphorylation sites of the insulin receptor kinase domain. An assessment by replacement with neutral and negatively charged amino acids. J. Biol. Chem., 1991, 266(2), 990-996. doi: 10.1016/S0021-9258(17)35272-9 PMID: 1846000
  139. Ming Yau, N.; Fong, A.; Leung, H.; Verhoeft, K.; Lim, Q.; Lam, W.; Kei Wong, I.; Yan Lui, V. A pan-cancer review of ALK mutations: Implications for carcinogenesis and therapy. Curr. Cancer Drug Targets, 2015, 15(4), 327-336. doi: 10.2174/1568009615666150225123712 PMID: 25714698
  140. Ogawa, S.; Takita, J.; Sanada, M.; Hayashi, Y. Oncogenic mutations of ALK in neuroblastoma. Cancer Sci., 2011, 102(2), 302-308. doi: 10.1111/j.1349-7006.2010.01825.x PMID: 21205076
  141. Janoueix-Lerosey, I.; Lequin, D.; Brugières, L.; Ribeiro, A.; de Pontual, L.; Combaret, V.; Raynal, V.; Puisieux, A.; Schleiermacher, G.; Pierron, G.; Valteau-Couanet, D.; Frebourg, T.; Michon, J.; Lyonnet, S.; Amiel, J.; Delattre, O. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature, 2008, 455(7215), 967-970. doi: 10.1038/nature07398 PMID: 18923523
  142. George, R.E.; Sanda, T.; Hanna, M.; Fröhling, S.; Ii, W.L.; Zhang, J.; Ahn, Y.; Zhou, W.; London, W.B.; McGrady, P.; Xue, L.; Zozulya, S.; Gregor, V.E.; Webb, T.R.; Gray, N.S.; Gilliland, D.G.; Diller, L.; Greulich, H.; Morris, S.W.; Meyerson, M.; Look, A.T. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature, 2008, 455(7215), 975-978. doi: 10.1038/nature07397 PMID: 18923525
  143. Pan, Y.; Deng, C.; Qiu, Z.; Cao, C.; Wu, F. The resistance mechanisms and treatment strategies for ALK-rearranged non-small cell lung cancer. Front. Oncol., 2021, 11, 713530.
  144. Sharma, G.; Mota, I.; Mologni, L.; Patrucco, E.; Gambacorti-Passerini, C.; Chiarle, R. Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers, 2018, 10(3), 62. doi: 10.3390/cancers10030062 PMID: 29495603
  145. Childress, M.A.; Himmelberg, S.M.; Chen, H.; Deng, W.; Davies, M.A.; Lovly, C.M. ALK fusion partners impact response to ALK inhibition: Differential effects on sensitivity, cellular phenotypes, and biochemical properties. Mol. Cancer Res., 2018, 16(11), 1724-1736. doi: 10.1158/1541-7786.MCR-18-0171 PMID: 30002191
  146. Shu, Y.; Zhang, W.; Hou, Q.; Zhao, L.; Zhang, S.; Zhou, J.; Song, X.; Zhang, Y.; Jiang, D.; Chen, X.; Wang, P.; Xia, X.; Liao, F.; Yin, D.; Chen, X.; Zhou, X.; Zhang, D.; Yin, S.; Yang, K.; Liu, J.; Fu, L.; Zhang, L.; Wang, Y.; Zhang, J.; An, Y.; Cheng, H.; Zheng, B.; Sun, H.; Zhao, Y.; Wang, Y.; Xie, D.; Ouyang, L.; Wang, P.; Zhang, W.; Qiu, M.; Fu, X.; Dai, L.; He, G.; Yang, H.; Cheng, W.; Yang, L.; Liu, B.; Li, W.; Dong, B.; Zhou, Z.; Wei, Y.; Peng, Y.; Xu, H.; Hu, J. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat. Commun., 2018, 9(1), 2447. doi: 10.1038/s41467-018-04907-0 PMID: 29961079

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024