A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides


Citar

Texto integral

Resumo

:Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.

Sobre autores

Kuldeep Singh

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Autor responsável pela correspondência
Email: info@benthamscience.net

Jeetendra Gupta

epartment of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Shivendra Kumar

Department of Pharmacology, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Urvashi Soni

Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University

Email: info@benthamscience.net

Bibliografia

  1. Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 2022, 23(3), 1851. doi: 10.3390/ijms23031851 PMID: 35163773
  2. Palanisamy, C.P.; Pei, J.; Alugoju, P.; Anthikapalli, N.V.A.; Jayaraman, S.; Veeraraghavan, V.P.; Gopathy, S.; Roy, J.R.; Janaki, C.S.; Thalamati, D.; Mironescu, M.; Luo, Q.; Miao, Y.; Chai, Y.; Long, Q. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics, 2023, 13(12), 4138-4165. doi: 10.7150/thno.83066 PMID: 37554286
  3. Cobb, C.A.; Cole, M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis., 2015, 84, 4-21. doi: 10.1016/j.nbd.2015.04.020 PMID: 26024962
  4. Wu, Y.; Angelova, A. Recent uses of lipid nanoparticles, cell-penetrating and bioactive peptides for the development of brain-targeted nanomedicines against neurodegenerative disorders. Nanomaterials, 2023, 13(23), 3004. doi: 10.3390/nano13233004 PMID: 38063700
  5. Galland, F.; de Espindola, J.S.; Lopes, D.S.; Taccola, M.F.; Pacheco, M.T.B. Food-derived bioactive peptides: Mechanisms of action underlying inflammation and oxidative stress in the central nervous system. Food Chemist. Adv., 2022, 1, 100087. doi: 10.1016/j.focha.2022.100087
  6. Samtiya, M.; Samtiya, S.; Badgujar, P.C.; Puniya, A.K.; Dhewa, T.; Aluko, R.E. Health-promoting and therapeutic attributes of milk-derived bioactive peptides. Nutrients, 2022, 14(15), 3001. doi: 10.3390/nu14153001 PMID: 35893855
  7. Li, Y.; Jin, T.; Liu, N.; Wang, J.; Qin, Z.; Yin, S.; Zhang, Y.; Fu, Z.; Wu, Y.; Wang, Y.; Liu, Y.; Yang, M.; Pang, A.; Sun, J.; Wang, Y.; Yang, X. A short peptide exerts neuroprotective effects on cerebral ischemia–reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. J. Neuroinflammation, 2023, 20(1), 53. doi: 10.1186/s12974-023-02739-4 PMID: 36593485
  8. Urbán, N.; Guillemot, F. Neurogenesis in the embryonic and adult brain: Same regulators, different roles. Front. Cell. Neurosci., 2014, 8, 396. PMID: 25505873
  9. Huang, M.; Chen, S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog. Neurobiol., 2021, 204, 102114. doi: 10.1016/j.pneurobio.2021.102114 PMID: 34174373
  10. Fang, P.; Kazmi, S.A.; Jameson, K.G.; Hsiao, E.Y. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe, 2020, 28(2), 201-222. doi: 10.1016/j.chom.2020.06.008 PMID: 32791113
  11. Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci. Technol., 2021, 117, 205-217. doi: 10.1016/j.tifs.2021.05.005
  12. Hao, J.J.; Hao, L.L. Review of clinical applications of scalp acupuncture for paralysis: An excerpt from chinese scalp acupuncture. Glob. Adv. Health Med., 2012, 1(1), 102-121. doi: 10.7453/gahmj.2012.1.1.017 PMID: 24278807
  13. Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; Puzzo, D.; Arancio, O. Role of amyloid-β and tau proteins in alzheimer’s disease: Confuting the amyloid cascade. J. Alzheimers Dis., 2018, 64(S1), S611-S631. doi: 10.3233/JAD-179935 PMID: 29865055
  14. Dhikav, V.; Anand, K.S. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol., 2012, 15(4), 239-246. doi: 10.4103/0972-2327.104323 PMID: 23349586
  15. Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci., 2013, 15(4), 445-454. doi: 10.31887/DCNS.2013.15.4/hjahn PMID: 24459411
  16. DeMaagd, G.; Philip, A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Therapeut., 2015, 40(8), 504-532. PMID: 26236139
  17. Bartels, A.L.; Leenders, K.L. Parkinson’s disease: The syndrome, the pathogenesis and pathophysiology. Cortex, 2009, 45(8), 915-921. doi: 10.1016/j.cortex.2008.11.010 PMID: 19095226
  18. Giguère, N.; Nanni, B.S.; Trudeau, L.E. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front. Neurol., 2018, 9, 455. doi: 10.3389/fneur.2018.00455 PMID: 29971039
  19. Ashraf, G.; Greig, N.; Khan, T.; Hassan, I.; Tabrez, S.; Shakil, S.; Sheikh, I.; Zaidi, S.; Akram, M.; Jabir, N.; Firoz, C.; Naeem, A.; Alhazza, I.; Damanhouri, G.; Kamal, M. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(7), 1280-1293. doi: 10.2174/1871527313666140917095514 PMID: 25230234
  20. Kins, S.; Lauther, N.; Szodorai, A.; Beyreuther, K. Subcellular trafficking of the amyloid precursor protein gene family and its pathogenic role in Alzheimer’s disease. Neurodegener. Dis., 2006, 3(4-5), 218-226. doi: 10.1159/000095259 PMID: 17047360
  21. Sheikh, S.; Safia; Haque, E.; Mir, S.S. Neurodegenerative diseases: Multifactorial conformational diseases and their therapeutic interventions. J. Neurodegener. Dis., 2013, 2013, 1-8. doi: 10.1155/2013/563481
  22. Parsons, M.P.; Raymond, L.A. Huntington Disease, 2nd ed; StatPearls Publishing: Treasure Island (FL), 2023, pp. 275-292.
  23. Paulsen, J.S. Cognitive impairment in Huntington disease: Diagnosis and treatment. Curr. Neurol. Neurosci. Rep., 2011, 11(5), 474-483. doi: 10.1007/s11910-011-0215-x PMID: 21861097
  24. Labbadia, J.; Morimoto, R.I. Huntington’s disease: Underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci., 2013, 38(8), 378-385. doi: 10.1016/j.tibs.2013.05.003 PMID: 23768628
  25. Kim, A.; Lalonde, K.; Truesdell, A.; Welter, G.P.; Brocardo, P.S.; Rosenstock, T.R.; Mohapel, G.J. New avenues for the treatment of huntington’s disease. Int. J. Mol. Sci., 2021, 22(16), 8363. doi: 10.3390/ijms22168363 PMID: 34445070
  26. Mühlbӓck, A.; van Walsem, M.; Nance, M.; Arnesen, A.; Page, K.; Fisher, A.; van Kampen, M.; Nuzzi, A.; Limpert, R.; Fossmo, H.L.; Cruickshank, T.; Veenhuizen, R. What we don’t need to prove but need to do in multidisciplinary treatment and care in Huntington’s disease: A position paper. Orphanet J. Rare Dis., 2023, 18(1), 19. doi: 10.1186/s13023-023-02622-8 PMID: 36717864
  27. Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int., 2015, 6(1), 171. doi: 10.4103/2152-7806.169561 PMID: 26629397
  28. Suzuki, N.; Nishiyama, A.; Warita, H.; Aoki, M. Genetics of amyotrophic lateral sclerosis: Seeking therapeutic targets in the era of gene therapy. J. Hum. Genet., 2023, 68(3), 131-152. doi: 10.1038/s10038-022-01055-8 PMID: 35691950
  29. Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929. doi: 10.1111/ene.14393 PMID: 32526057
  30. Blokhuis, A.M.; Groen, E.J.N.; Koppers, M.; van den Berg, L.H.; Pasterkamp, R.J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol., 2013, 125(6), 777-794. doi: 10.1007/s00401-013-1125-6 PMID: 23673820
  31. Mortada, I.; Farah, R.; Nabha, S.; Ojcius, D.M.; Fares, Y.; Almawi, W.Y.; Sadier, N.S. Immunotherapies for neurodegenerative diseases. Front. Neurol., 2021, 12, 654739. doi: 10.3389/fneur.2021.654739 PMID: 34163421
  32. Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord., 2013, 6(1), 19-33. doi: 10.1177/1756285612461679 PMID: 23277790
  33. Ali, R.; Gupta, G.D.; Chawla, P.A. Aducanumab: A new hope in Alzheimer’s disease. Health Sci. Rep., 2022, 4, 100039. doi: 10.1016/j.hsr.2022.100039
  34. Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Sharma, N.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Felemban, S.G.; Alsubayiel, A.M.; Bhatia, S.; Bungau, S. "Aducanumab" making a comeback in Alzheimer’s disease: An old wine in a new bottle. Biomed. Pharmacother., 2022, 148, 112746. doi: 10.1016/j.biopha.2022.112746 PMID: 35231697
  35. Imbimbo, B.P.; Ippati, S.; Watling, M.; Imbimbo, C. Role of monomeric amyloid-β in cognitive performance in Alzheimer’s disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol. Res., 2023, 187, 106631. doi: 10.1016/j.phrs.2022.106631 PMID: 36586644
  36. Ji, C.; Sigurdsson, E.M. Current status of clinical trials on tau immunotherapies. Drugs, 2021, 81(10), 1135-1152. doi: 10.1007/s40265-021-01546-6 PMID: 34101156
  37. Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. Clin. Exp., 2003, 64(4), 216-235. doi: 10.1016/S0011-393X(03)00059-6 PMID: 24944370
  38. Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 2021, 190, 108352. doi: 10.1016/j.neuropharm.2020.108352 PMID: 33035532
  39. Kandiah, N.; Pai, M.C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A.K.; Christopher, S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging, 2017, 12, 697-707. doi: 10.2147/CIA.S129145 PMID: 28458525
  40. Esang, M.; Gupta, M. Aducanumab as a novel treatment for alzheimer’s disease: A decade of hope, controversies, and the future. Cureus, 2021, 13(8), e17591. doi: 10.7759/cureus.17591 PMID: 34646644
  41. Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of alzheimer’s disease: A focus on aducanumab and lecanemab. Front. Aging Neurosci., 2022, 14, 870517. doi: 10.3389/fnagi.2022.870517 PMID: 35493943
  42. Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048. doi: 10.3233/JAD-160763 PMID: 27662322
  43. Tariot, P.N.; Farlow, M.R.; Grossberg, G.T.; Graham, S.M.; McDonald, S.; Gergel, I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: A randomized controlled trial. JAMA, 2004, 291(3), 317-324. doi: 10.1001/jama.291.3.317 PMID: 14734594
  44. Paul, A.; Yadav, K.S. Parkinson’s disease: Current drug therapy and unraveling the prospects of nanoparticles. J. Drug Deliv. Sci. Technol., 2020, 58, 101790. doi: 10.1016/j.jddst.2020.101790
  45. Ovallath, S.; Sulthana, B. Levodopa: History and therapeutic applications. Ann. Indian Acad. Neurol., 2017, 20(3), 185-189. doi: 10.4103/aian.AIAN_241_17 PMID: 28904446
  46. Kelley, BJ; Duker, AP; Chiu, P Dopamine agonists and pathologic behaviors. Parkinsons Dis., 2012, 2012, 603631. doi: 10.1155/2012/603631
  47. Emmady, P.D.; Schoo, C.; Tadi, P. Major neurocognitive disorder (Dementia). In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2022.
  48. Alghamdi, B.S. The neuroprotective role of melatonin in neurological disorders. J. Neurosci. Res., 2018, 96(7), 1136-1149. doi: 10.1002/jnr.24220 PMID: 29498103
  49. Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig., 2010, 1(1-2), 8-23. doi: 10.1111/j.2040-1124.2010.00022.x PMID: 24843404
  50. Aksoy, D.; Solmaz, V.; Çavuşoğlu, T.; Meral, A.; Ateş, U.; Erbaş, O. Neuroprotective effects of eexenatide in a rotenone-induced rat model of parkinson’s disease. Am. J. Med. Sci., 2017, 354(3), 319-324. doi: 10.1016/j.amjms.2017.05.002 PMID: 28918840
  51. Grotemeyer, A.; McFleder, R.L.; Wu, J.; Wischhusen, J.; Ip, C.W. Neuroinflammation in parkinson’s disease – putative pathomechanisms and targets for disease-modification. Front. Immunol., 2022, 13, 878771. doi: 10.3389/fimmu.2022.878771 PMID: 35663989
  52. Kang, M.Y.; Oh, T.J.; Cho, Y.M. Glucagon-like peptide-1 increases mitochondrial biogenesis and function in INS-1 rat insulinoma cells. Endocrinol. Metab., 2015, 30(2), 216-220. doi: 10.3803/EnM.2015.30.2.216 PMID: 26194081
  53. Salcedo, I.; Tweedie, D.; Li, Y.; Greig, N.H. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br. J. Pharmacol., 2012, 166(5), 1586-1599. doi: 10.1111/j.1476-5381.2012.01971.x PMID: 22519295
  54. Glotfelty, E.J.; Olson, L.; Karlsson, T.E.; Li, Y.; Greig, N.H. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson’s disease. Expert Opin. Investig. Drugs, 2020, 29(6), 595-602. doi: 10.1080/13543784.2020.1764534 PMID: 32412796
  55. Karpiesiuk, A.; Palus, K. Pituitary adenylate cyclase-activating polypeptide (PACAP) in physiological and pathological processes within the gastrointestinal tract: A review. Int. J. Mol. Sci., 2021, 22(16), 8682. doi: 10.3390/ijms22168682 PMID: 34445388
  56. Hirabayashi, T.; Nakamachi, T.; Shioda, S. Discovery of PACAP and its receptors in the brain. J. Headache Pain, 2018, 19(1), 28. doi: 10.1186/s10194-018-0855-1 PMID: 29619773
  57. Dong, D.; Xie, J.; Wang, J. Neuroprotective effects of brain-gut peptides: A potential therapy for parkinson’s disease. Neurosci. Bull., 2019, 35(6), 1085-1096. doi: 10.1007/s12264-019-00407-3 PMID: 31286411
  58. Johnson, M.B.; Young, A.D.; Marriott, I. The therapeutic potential of targeting substance P/NK-1R interactions in inflammatory CNS disorders. Front. Cell. Neurosci., 2016, 10, 296. PMID: 28101005
  59. Cherait, A.; Banks, W.A.; Vaudry, D. The potential of the nose-to-brain delivery of PACAP for the treatment of neuronal disease. Pharmaceutics, 2023, 15(8), 2032. doi: 10.3390/pharmaceutics15082032 PMID: 37631246
  60. Ramesh, N.; Mohan, H.; Unniappan, S. Nucleobindin-1 encodes a nesfatin-1-like peptide that stimulates insulin secretion. Gen. Comp. Endocrinol., 2015, 216, 182-189. doi: 10.1016/j.ygcen.2015.04.011 PMID: 25907657
  61. Ayada, C.; Toru, Ü.; Korkut, Y. Nesfatin-1 and its effects on different systems. Hippokratia, 2015, 19(1), 4-10. PMID: 26435639
  62. Esposito, E; Matteo, D.V; Benigno, A; Pierucci, M; Crescimanno, G; Giovanni, D.G Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp. Neurol., 2007, 205(2), 295-312. doi: 10.1016/j.expneurol.2007.02.008
  63. Shen, X.L.; Song, N.; Du, X.X.; Li, Y.; Xie, J.X.; Jiang, H. Nesfatin-1 protects dopaminergic neurons against MPP+/MPTP-induced neurotoxicity through the C-Raf–ERK1/2-dependent anti-apoptotic pathway. Sci. Rep., 2017, 7(1), 40961. doi: 10.1038/srep40961
  64. Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42. doi: 10.1186/s40035-020-00221-2 PMID: 33239064
  65. Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
  66. Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402(6762), 656-660. doi: 10.1038/45230 PMID: 10604470
  67. Akalu, Y; Molla, MD; Dessie, G; Ayelign, B Physiological effect of ghrelin on body systems. Int. J. Endocrinol., 2020, 2020, 1385138. doi: 10.1155/2020/1385138
  68. Russo, C.; Valle, M.S.; Russo, A.; Malaguarnera, L. The interplay between ghrelin and microglia in neuroinflammation: Implications for obesity and neurodegenerative diseases. Int. J. Mol. Sci., 2022, 23(21), 13432. doi: 10.3390/ijms232113432 PMID: 36362220
  69. Sanchez, J.M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s Disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240. doi: 10.1101/cshperspect.a024240 PMID: 27940602
  70. De Tommaso, M.; Serpino, C.; Sciruicchio, V. Management of Huntington’s disease: Role of tetrabenazine. Ther. Clin. Risk Manag., 2011, 7, 123-129. doi: 10.2147/TCRM.S17152 PMID: 21479143
  71. Ding, J; Gadit, AM Psychosis with Huntington's disease: Role of antipsychotic medications. BMJ Case Rep., 2014, 2014, bcr2013202625.
  72. Dong, X.; Wang, Y.; Qin, Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387. doi: 10.1038/aps.2009.24 PMID: 19343058
  73. Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 6(6), 1164-1178. doi: 10.5114/aoms.2015.56342 PMID: 26788077
  74. Alkanli, S.S.; Alkanli, N.; Ay, A.; Albeniz, I. CRISPR/Cas9 mediated therapeutic approach in Huntington’s Disease. Mol. Neurobiol., 2023, 60(3), 1486-1498. doi: 10.1007/s12035-022-03150-5 PMID: 36482283
  75. Yang, S.; Chang, R.; Yang, H.; Zhao, T.; Hong, Y.; Kong, H.E.; Sun, X.; Qin, Z.; Jin, P.; Li, S.; Li, X.J. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest., 2017, 127(7), 2719-2724. doi: 10.1172/JCI92087 PMID: 28628038
  76. Berlet, R.; Anthony, S.; Brooks, B.; Wang, Z.J.; Sadanandan, N.; Shear, A.; Cozene, B.; Portillo, G.B.; Parsons, B.; Salazar, F.E.; Toledo, L.A.R.; Monroy, G.R.; Portillo, G.J.V.; Borlongan, C.V. Combination of stem cells and rehabilitation therapies for ischemic stroke. Biomolecules, 2021, 11(9), 1316. doi: 10.3390/biom11091316 PMID: 34572529
  77. Vazin, T.; Freed, W.J. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor. Neurol. Neurosci., 2010, 28(4), 589-603. doi: 10.3233/RNN-2010-0543 PMID: 20714081
  78. Rajput, A.; Varshney, A.; Bajaj, R.; Pokharkar, V. Exosomes as new generation vehicles for drug delivery: Biomedical applications and future perspectives. Molecules, 2022, 27(21), 7289. doi: 10.3390/molecules27217289 PMID: 36364116
  79. Saba, J.; Couselo, F.L.; Bruno, J.; Carniglia, L.; Durand, D.; Lasaga, M.; Caruso, C. Neuroinflammation in Huntington’s Disease: A starring role for astrocyte and microglia. Curr. Neuropharmacol., 2022, 20(6), 1116-1143. doi: 10.2174/1570159X19666211201094608 PMID: 34852742
  80. Nowicka, N.; Juranek, J.; Juranek, J.K.; Wojtkiewicz, J. Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2019, 20(11), 2616. doi: 10.3390/ijms20112616 PMID: 31141951
  81. Okada, M.; Yamashita, S.; Ueyama, H.; Ishizaki, M.; Maeda, Y.; Ando, Y. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis. eNeurologicalSci, 2018, 11, 11-14. doi: 10.1016/j.ensci.2018.05.001 PMID: 29928711
  82. Mouhammad, Z.A.; Vohra, R.; Horwitz, A.; Thein, A.S.; Rovelt, J.; Cvenkel, B.; Williams, P.A.; Blanco, A.A.; Kolko, M. Glucagon-like peptide 1 receptor agonists – potential game changers in the treatment of glaucoma? Front. Neurosci., 2022, 16, 824054. doi: 10.3389/fnins.2022.824054 PMID: 35264926
  83. Wang, S.; Sun-Waterhouse, D.; Neil Waterhouse, G.I.; Zheng, L.; Su, G.; Zhao, M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci. Technol., 2021, 116, 712-732. doi: 10.1016/j.tifs.2021.04.056
  84. Yeo, X.Y.; Cunliffe, G.; Ho, R.C.; Lee, S.S.; Jung, S. Potentials of neuropeptides as therapeutic agents for Neurological Diseases. Biomedicines, 2022, 10(2), 343. doi: 10.3390/biomedicines10020343 PMID: 35203552
  85. Sakthiswary, R.; Raymond, A.A. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regen. Res., 2012, 7(23), 1822-1831. PMID: 25624807
  86. Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci., 2019, 20(10), 2383. doi: 10.3390/ijms20102383 PMID: 31091705
  87. Strafella, C.; Caputo, V.; Galota, M.R.; Zampatti, S.; Marella, G.; Mauriello, S.; Cascella, R.; Giardina, E. Application of precision medicine in Neurodegenerative Diseases. Front. Neurol., 2018, 9, 701. doi: 10.3389/fneur.2018.00701 PMID: 30190701
  88. Malviya, R.; Singh, A.K.; Verma, S. Personalized medicine: Advanced treatment strategies to revolutionize healthcare. Curr. Drug Res. Rev., 2023, 15(2), 101-104. doi: 10.2174/2589977515666221104152641 PMID: 36336809
  89. Mahdieh, N.; Rabbani, B. An overview of mutation detection methods in genetic disorders. Iran. J. Pediatr., 2013, 23(4), 375-388. PMID: 24427490
  90. Mathur, S.; Sutton, J. Personalized medicine could transform healthcare. Biomed. Rep., 2017, 7(1), 3-5. doi: 10.3892/br.2017.922 PMID: 28685051
  91. Raghunathan, R.; Turajane, K.; Wong, L.C. Biomarkers in neurodegenerative diseases: Proteomics spotlight on ALS and Parkinson’s Disease. Int. J. Mol. Sci., 2022, 23(16), 9299. doi: 10.3390/ijms23169299 PMID: 36012563
  92. Li, L.; Wu, J.; Lyon, C.J.; Jiang, L.; Hu, T.Y. Clinical peptidomics: Advances in instrumentation, analyses, and applications. BME Front., 2023, 4, 0019.
  93. Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; D’Agostino, Y.; Salvati, A.; Del Giudice, C.; Tesorio, P.; Rusciano, M.R. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes, 2020, 11(7), 747. doi: 10.3390/genes11070747 PMID: 32640513
  94. Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Saleh, B.K.; Badreldin, H.A.; Yami, A.M.S.; Harbi, A.S.; Albekairy, A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ., 2023, 23(1), 689. doi: 10.1186/s12909-023-04698-z PMID: 37740191
  95. Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril., 2018, 109(6), 952-963. doi: 10.1016/j.fertnstert.2018.05.006 PMID: 29935653
  96. Stoddard, H.B.M.; Smith, J.J. Precision medicine clinical trials: Defining new treatment strategies. Semin. Oncol. Nurs., 2014, 30(2), 109-116. doi: 10.1016/j.soncn.2014.03.004 PMID: 24794084
  97. Chen, W.; Hu, Y.; Ju, D. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm. Sin. B, 2020, 10(8), 1347-1359. doi: 10.1016/j.apsb.2020.01.015 PMID: 32963936
  98. Gupta, J.K.; Singh, K. Pharmacological potential of bioactive peptides for the treatment of diseases associated with alzheimer’s and brain disorders. Curr. Mol. Med., 2023, 2023, 23. PMID: 37691200
  99. Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci., 2022, 23(3), 1445. doi: 10.3390/ijms23031445 PMID: 35163367
  100. Zaky, A.A.; Gandara, S.J.; Eun, J.B.; Shim, J.H.; Aty, A.E.A.M. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr., 2021, 8, 815640. PMID: 35127796
  101. Pilozzi, A.; Carro, C.; Huang, X. Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. Int. J. Mol. Sci., 2020, 22(1), 338. doi: 10.3390/ijms22010338 PMID: 33396962
  102. Klein, J.A.; Ackerman, S.L. Oxidative stress, cell cycle, and neurodegeneration. J. Clin. Invest., 2003, 111(6), 785-793. doi: 10.1172/JCI200318182 PMID: 12639981
  103. Lee, S.Y.; Hur, S.J. Mechanisms of neuroprotective effects of peptides derived from natural materials and their production and assessment. Compr. Rev. Food Sci. Food Saf., 2019, 18(4), 923-935. doi: 10.1111/1541-4337.12451 PMID: 33336993
  104. Ögren, S.O.; Kuteeva, E.; Tottie, E.E.; Hökfelt, T. Neuropeptides in learning and memory processes with focus on galanin. Eur. J. Pharmacol., 2010, 626(1), 9-17. doi: 10.1016/j.ejphar.2009.09.070 PMID: 19837050
  105. Hayes, M.; Tiwari, B. Bioactive carbohydrates and peptides in foods: an overview of sources, downstream processing steps and associated bioactivities. Int. J. Mol. Sci., 2015, 16(9), 22485-22508. doi: 10.3390/ijms160922485 PMID: 26393573
  106. Sim, A.Y.; Barua, S.; Kim, J.Y.; Lee, Y.; Lee, J.E. Role of DPP-4 and SGLT2 inhibitors connected to alzheimer disease in type 2 diabetes mellitus. Front. Neurosci., 2021, 15, 708547. doi: 10.3389/fnins.2021.708547 PMID: 34489627
  107. Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235. doi: 10.1038/aps.2017.28 PMID: 28713158
  108. Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399. doi: 10.1101/cshperspect.a009399 PMID: 22355802
  109. Ibrahim, A.M.; Chauhan, L.; Bhardwaj, A.; Sharma, A.; Fayaz, F.; Kumar, B.; Alhashmi, M.; AlHajri, N.; Alam, M.S.; Pottoo, F.H. Brain-derived neurotropic factor in neurodegenerative disorders. Biomedicines, 2022, 10(5), 1143. doi: 10.3390/biomedicines10051143 PMID: 35625880
  110. Olufunmilayo, E.O.; Duncan, G.M.B.; Holsinger, R.M.D. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants, 2023, 12(2), 517. doi: 10.3390/antiox12020517 PMID: 36830075
  111. Ge, L.; Liu, S.; Rubin, L.; Lazarovici, P.; Zheng, W. Research progress on neuroprotection of insulin-like growth factor-1 towards glutamate-induced neurotoxicity. Cells, 2022, 11(4), 666. doi: 10.3390/cells11040666 PMID: 35203315
  112. Mykicki, N.; Herrmann, A.M.; Schwab, N.; Deenen, R.; Sparwasser, T.; Limmer, A.; Wachsmuth, L.; Klotz, L.; Köhrer, K.; Faber, C.; Wiendl, H.; Luger, T.A.; Meuth, S.G.; Loser, K. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease. Sci. Transl. Med., 2016, 8(362), 362ra146. doi: 10.1126/scitranslmed.aaf8732 PMID: 27797962
  113. Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Front. Neurosci., 2019, 13, 869. doi: 10.3389/fnins.2019.00869 PMID: 31481869
  114. Wang, Q.; Cao, F.; Wu, Y. Orexinergic system in neurodegenerative diseases. Front. Aging Neurosci., 2021, 13, 713201. doi: 10.3389/fnagi.2021.713201 PMID: 34483883
  115. Liguz-Lecznar, M.; Dobrzanski, G.; Kossut, M. Somatostatin and somatostatin-containing interneurons—From plasticity to pathology. Biomolecules, 2022, 12(2), 312. doi: 10.3390/biom12020312 PMID: 35204812
  116. Lundström, L.; Elmquist, A.; Bartfai, T.; Langel, Ü. Galanin and its receptors in neurological disorders. Neuromolecular Med., 2005, 7(1-2), 157-180. doi: 10.1385/NMM:7:1-2:157 PMID: 16052044
  117. Delgado, M.; Ganea, D. Vasoactive intestinal peptide: A neuropeptide with pleiotropic immune functions. Amino Acids, 2013, 45(1), 25-39. doi: 10.1007/s00726-011-1184-8 PMID: 22139413
  118. Maasz, G.; Zrinyi, Z.; Reglodi, D.; Petrovics, D.; Rivnyak, A.; Kiss, T.; Jungling, A.; Tamas, A.; Pirger, Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis. Model. Mech., 2017, 10(2), 127-139. PMID: 28067625
  119. Frago, L.; Baquedano, E.; Argente, J.; Chowen, J.A. Neuroprotective actions of ghrelin and growth hormone secretagogues. Front. Mol. Neurosci., 2011, 4, 23. doi: 10.3389/fnmol.2011.00023 PMID: 21994488
  120. Signore, A.P.; Zhang, F.; Weng, Z.; Gao, Y.Q.; Chen, J. Leptin neuroprotection in the central nervous system: Mechanisms and therapeutic potentials. J. Neurochem., 2008, 106(5), 1977. doi: 10.1111/j.1471-4159.2008.05457.x PMID: 18466320
  121. Carson, M.J.; Thrash, C.J.; Walter, B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin. Neurosci. Res., 2006, 6(5), 237-245. doi: 10.1016/j.cnr.2006.09.004 PMID: 19169437
  122. Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
  123. Johnson, H.J.; Koshy, A.A. Understanding neuroinflammation through central nervous system infections. Curr. Opin. Neurobiol., 2022, 76, 102619. doi: 10.1016/j.conb.2022.102619 PMID: 35985075
  124. Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 291. doi: 10.1038/s41392-021-00687-0 PMID: 34344870
  125. Lee, YS; Jun, HS Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm., 2016, 2016
  126. Gokhale, A.S.; Satyanarayanajois, S. Peptides and peptidomimetics as immunomodulators. Immunotherapy, 2014, 6(6), 755-774. doi: 10.2217/imt.14.37 PMID: 25186605
  127. Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 2004, 68(2), 320-344. doi: 10.1128/MMBR.68.2.320-344.2004 PMID: 15187187
  128. Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-κB signaling in inflammation and cancer. MedComm., 2021, 2(4), 618-653. doi: 10.1002/mco2.104 PMID: 34977871
  129. Boldin, R.; Zychar, B.C.; Gonçalves, L.R.C.; Sciani, J.M. Design, in silico and pharmacological evaluation of a peptide inhibitor of BACE-1. Front. Pharmacol., 2023, 14, 1184006. doi: 10.3389/fphar.2023.1184006 PMID: 37397495
  130. Peighambardoust, S.H.; Karami, Z.; Pateiro, M.; Lorenzo, J.M. A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules, 2021, 11(5), 631. doi: 10.3390/biom11050631 PMID: 33922830
  131. Angeloni, C.; Malaguti, M.; Prata, C.; Freschi, M.; Barbalace, M.; Hrelia, S. Mechanisms underlying neurodegenerative disorders and potential neuroprotective activity of agrifood by-products. Antioxidants, 2022, 12(1), 94. doi: 10.3390/antiox12010094 PMID: 36670956
  132. Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. doi: 10.2174/157015909787602823 PMID: 19721819
  133. Jeremic, D.; Díaz, J.L.; López, N.J.D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res. Rev., 2021, 72, 101496. doi: 10.1016/j.arr.2021.101496 PMID: 34687956
  134. Kour, A.; Dube, T.; Kumar, A.; Panda, J.J. Anti-amyloidogenic and fibril-disaggregating potency of the levodopa-functionalized gold nanoroses as exemplified in a diphenylalanine-based amyloid model. Bioconjug. Chem., 2022, 33(2), 397-410. doi: 10.1021/acs.bioconjchem.2c00007 PMID: 35120290
  135. Wang, R.; Zhang, Y.; Guo, Y.; Zeng, W.; Li, J.; Wu, J. Plant-derived nanovesicles: Promising therapeutics and drug delivery nanoplatforms for brain disorders. In: Fundamental Research; , 2023.
  136. Pajares, M.; I Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in parkinson’s disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687. doi: 10.3390/cells9071687 PMID: 32674367
  137. Valadão, P.A.C.; Santos, K.B.S.; Vieira, F.T.H.; e Cordeiro, M.T.; Teixeira, A.L.; Guatimosim, C.; De Miranda, A.S. Inflammation in Huntington’s disease: A few new twists on an old tale. J. Neuroimmunol., 2020, 348, 577380. doi: 10.1016/j.jneuroim.2020.577380 PMID: 32896821
  138. Calderón, T.P.A.; Chinchilla, V.C.D.; Lara, G.S. Natural peptides inducing cancer cell death: Mechanisms and properties of specific candidates for cancer therapeutics. Molecules, 2021, 26(24), 7453. doi: 10.3390/molecules26247453 PMID: 34946535
  139. Wu, S.; Bekhit, A.E.D.A.; Wu, Q.; Chen, M.; Liao, X.; Wang, J.; Ding, Y. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci. Technol., 2021, 108, 164-176. doi: 10.1016/j.tifs.2020.12.019
  140. Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol., 2017, 174(11), 1378-1394. doi: 10.1111/bph.13608 PMID: 27572703
  141. Wang, J.; Wu, Y.; Chen, Z.; Chen, Y.; Lin, Q.; Liang, Y. Exogenous bioactive peptides have a potential therapeutic role in delaying aging in rodent models. Int. J. Mol. Sci., 2022, 23(3), 1421. doi: 10.3390/ijms23031421 PMID: 35163342
  142. Balakrishnan, R.; Cho, D.Y.; Kim, I.S.; Seol, S.H.; Choi, D.K. Molecular mechanisms and therapeutic potential of α- and β-asarone in the treatment of neurological disorders. Antioxidants, 2022, 11(2), 281. doi: 10.3390/antiox11020281 PMID: 35204164
  143. Cardoso, M.H.; Orozco, R.Q.; Rezende, S.B.; Rodrigues, G.; Oshiro, K.G.N.; Cândido, E.S.; Franco, O.L. Computer-aided design of antimicrobial peptides: Are we generating effective drug candidates? Front. Microbiol., 2020, 10, 3097. doi: 10.3389/fmicb.2019.03097 PMID: 32038544
  144. Moir, R.D.; Lathe, R.; Tanzi, R.E. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement., 2018, 14(12), 1602-1614. doi: 10.1016/j.jalz.2018.06.3040 PMID: 30314800
  145. Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204. doi: 10.3389/fchem.2018.00204 PMID: 29922648
  146. Lee, E.Y.; Chan, L.C.; Wang, H.; Lieng, J.; Hung, M.; Srinivasan, Y.; Wang, J.; Waschek, J.A.; Ferguson, A.L.; Lee, K.F.; Yount, N.Y.; Yeaman, M.R.; Wong, G.C.L. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc. Natl. Acad. Sci., 2021, 118(1), e1917623117. doi: 10.1073/pnas.1917623117 PMID: 33372152
  147. Toda, H.; Williams, J.A.; Gulledge, M.; Sehgal, A. A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science, 2019, 363(6426), 509-515. doi: 10.1126/science.aat1650 PMID: 30705188
  148. Augustin, R.; Schröder, K.; Rincón, M.A.P.; Fraune, S.; Erxleben, A.F.; Herbst, E.M.; Wittlieb, J.; Schwentner, M.; Grötzinger, J.; Wassenaar, T.M.; Bosch, T.C.G. A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nat. Commun., 2017, 8(1), 698. doi: 10.1038/s41467-017-00625-1 PMID: 28951596
  149. Barajas-Azpeleta, R.; Wu, J.; Gill, J.; Welte, R.; Seidel, C.; McKinney, S.; Dissel, S.; Si, K. Antimicrobial peptides modulate long-term memory. PLoS Genet., 2018, 14(10), e1007440. doi: 10.1371/journal.pgen.1007440 PMID: 30312294
  150. Guaní-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol., 2010, 135(1), 1-11. doi: 10.1016/j.clim.2009.12.004 PMID: 20116332
  151. Hanson, M.A.; Lemaitre, B. New insights on drosophila antimicrobial peptide function in host defense and beyond. Curr. Opin. Immunol., 2020, 62, 22-30. doi: 10.1016/j.coi.2019.11.008 PMID: 31835066
  152. Swanson, L.C.; Rimkus, S.A.; Ganetzky, B.; Wassarman, D.A. Loss of the antimicrobial peptide metchnikowin protects against traumatic brain injury outcomes in Drosophila melanogaster. G3: Genes, Genomes. Genetics, 2020, 10(9), 3109-3119. doi: 10.1534/g3.120.401377 PMID: 32631949
  153. Maezawa, I.; Zimin, P.I.; Wulff, H.; Jin, L.W. Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J. Biol. Chem., 2011, 286(5), 3693-3706. doi: 10.1074/jbc.M110.135244 PMID: 20971854
  154. Schröder, N.; Schaffrath, A.; Welter, J.A.; Putzka, T.; Griep, A.; Ziegler, P.; Brandt, E.; Samer, S.; Heneka, M.T.; Kaddatz, H.; Zhan, J.; Kipp, E.; Pufe, T.; Tauber, S.C.; Kipp, M.; Brandenburg, L.O. Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. J. Neuroinflammation, 2020, 17(1), 131. doi: 10.1186/s12974-020-01816-2 PMID: 32331524
  155. De Lorenzi, E.; Chiari, M.; Colombo, R.; Cretich, M.; Sola, L.; Vanna, R.; Gagni, P.; Bisceglia, F.; Morasso, C.; Lin, J.S.; Lee, M.; McGeer, P.L.; Barron, A.E. Evidence that the human innate immune peptide LL-37 may be a binding partner of amyloid-β and inhibitor of fibril assembly. J. Alzheimers Dis., 2017, 59(4), 1213-1226. doi: 10.3233/JAD-170223 PMID: 28731438
  156. Beatman, E.L.; Massey, A.; Shives, K.D.; Burrack, K.S.; Chamanian, M.; Morrison, T.E.; Beckham, J.D. Alpha-synuclein expression restricts RNA viral infections in the brain. J. Virol., 2016, 90(6), 2767-2782. doi: 10.1128/JVI.02949-15 PMID: 26719256
  157. Kounatidis, I.; Chtarbanova, S.; Cao, Y.; Hayne, M.; Jayanth, D.; Ganetzky, B.; Ligoxygakis, P. NF-κB immunity in the brain determines fly lifespan in healthy aging and age-related neurodegeneration. Cell Rep., 2017, 19(4), 836-848. doi: 10.1016/j.celrep.2017.04.007 PMID: 28445733
  158. AlMatar, M.; Albarri, O.; lakhal, R.; Ocal, M.M.; Var, I.; Köksal, F. Bacterial pathogens: Potential source for antimicrobial peptides. Curr. Protein Pept. Sci., 2023, 24(7), 551-566. doi: 10.2174/1389203724666230726100303 PMID: 37496250
  159. E., Lazi; Zhou, T.; Koh, S.; Chuang, M.; Sharma, R.; Pujol, N.; Chisholm, A.D.; Eroglu, C.; Matsunami, H.; Yan, D. An antimicrobial peptide and its neuronal receptor regulate dendrite degeneration in aging and infection. Neuron, 2018, 97(1), 125-138.e5. doi: 10.1016/j.neuron.2017.12.001 PMID: 29301098
  160. AlMatar, M.; Makky, E.A.; Yakıcı, G.; Var, I.; Kayar, B.; Köksal, F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol. Res., 2018, 128, 288-305. doi: 10.1016/j.phrs.2017.10.011 PMID: 29079429
  161. Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a033118. doi: 10.1101/cshperspect.a033118 PMID: 28716886
  162. Zhao, L.; Li, D.; Qi, X.; Guan, K.; Chen, H.; Wang, R.; Ma, Y. Potential of food-derived bioactive peptides in alleviation and prevention of Alzheimer’s disease. Food Funct., 2022, 13(21), 10851-10869. doi: 10.1039/D2FO02278H PMID: 36219143
  163. Siafaka, P.I.; Okur, M.E.; Erim, P.D.; Çağlar, E.Ş.; Özgenç, E.; Gündoğdu, E.; Köprülü, R.E.P.; Karantas, I.D.; Okur, U.N. Protein and gene delivery systems for neurodegenerative disorders: Where do we stand today? Pharmaceutics, 2022, 14(11), 2425. doi: 10.3390/pharmaceutics14112425 PMID: 36365243
  164. Bhattacharya, T.; Soares, G.A.B.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials, 2022, 15(3), 804. doi: 10.3390/ma15030804 PMID: 35160749
  165. Arafah, A.; Khatoon, S.; Rasool, I.; Khan, A.; Rather, M.A.; Abujabal, K.A.; Faqih, Y.A.H.; Rashid, H.; Rashid, S.M.; Ahmad, B.S.; Alexiou, A.; Rehman, M.U. The future of precision medicine in the cure of alzheimer’s disease. Biomedicines, 2023, 11(2), 335. doi: 10.3390/biomedicines11020335 PMID: 36830872
  166. Nayab, D.E.; Din, F.; Ali, H.; Kausar, W.A.; Urooj, S.; Zafar, M.; Khan, I.; Shabbir, K.; Khan, G.M. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: An up-to-date perspective. J. Nanobiotechnology, 2023, 21(1), 477. doi: 10.1186/s12951-023-02250-1 PMID: 38087359
  167. Nguyen, T.T.; Dung Nguyen, T.T.; Vo, T.K.; Tran, N.M.A.; Nguyen, M.K.; Van Vo, T.; Van Vo, G. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother., 2021, 143, 112117. doi: 10.1016/j.biopha.2021.112117 PMID: 34479020
  168. Dedeoglu, A.; Kubilus, J.K.; Yang, L.; Ferrante, K.L.; Hersch, S.M.; Beal, M.F.; Ferrante, A.R.J. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J. Neurochem., 2003, 85(6), 1359-1367. doi: 10.1046/j.1471-4159.2003.01706.x PMID: 12787055
  169. Ezaki, M.; Baek, G.H.; Horii, E.; Hovius, S. IFSSH scientific committee on congenital conditions. J. Hand Surg. Eur. Vol., 2014, 39(6), 676-678. doi: 10.1177/1753193414526334 PMID: 24939554
  170. Kasatkina, L.A.; Rittchen, S.; Sturm, E.M. Neuroprotective and immunomodulatory action of the endocannabinoid system under neuroinflammation. Int. J. Mol. Sci., 2021, 22(11), 5431. doi: 10.3390/ijms22115431 PMID: 34063947

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024