A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides
- Autores: Singh K.1, Gupta J.K.2, Kumar S.3, Soni U.4
-
Afiliações:
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University
- epartment of Pharmacology, Institute of Pharmaceutical Research, GLA University
- Department of Pharmacology, Rajiv Academy for Pharmacy
- Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University
- Edição: Volume 25, Nº 7 (2024)
- Páginas: 507-526
- Seção: Life Sciences
- URL: https://rjsvd.com/1389-2037/article/view/645666
- DOI: https://doi.org/10.2174/0113892037275221240327042353
- ID: 645666
Citar
Texto integral
Resumo
:Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.
Sobre autores
Kuldeep Singh
Department of Pharmacology, Institute of Pharmaceutical Research, GLA University
Autor responsável pela correspondência
Email: info@benthamscience.net
Jeetendra Gupta
epartment of Pharmacology, Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Shivendra Kumar
Department of Pharmacology, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Urvashi Soni
Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University
Email: info@benthamscience.net
Bibliografia
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 2022, 23(3), 1851. doi: 10.3390/ijms23031851 PMID: 35163773
- Palanisamy, C.P.; Pei, J.; Alugoju, P.; Anthikapalli, N.V.A.; Jayaraman, S.; Veeraraghavan, V.P.; Gopathy, S.; Roy, J.R.; Janaki, C.S.; Thalamati, D.; Mironescu, M.; Luo, Q.; Miao, Y.; Chai, Y.; Long, Q. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics, 2023, 13(12), 4138-4165. doi: 10.7150/thno.83066 PMID: 37554286
- Cobb, C.A.; Cole, M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis., 2015, 84, 4-21. doi: 10.1016/j.nbd.2015.04.020 PMID: 26024962
- Wu, Y.; Angelova, A. Recent uses of lipid nanoparticles, cell-penetrating and bioactive peptides for the development of brain-targeted nanomedicines against neurodegenerative disorders. Nanomaterials, 2023, 13(23), 3004. doi: 10.3390/nano13233004 PMID: 38063700
- Galland, F.; de Espindola, J.S.; Lopes, D.S.; Taccola, M.F.; Pacheco, M.T.B. Food-derived bioactive peptides: Mechanisms of action underlying inflammation and oxidative stress in the central nervous system. Food Chemist. Adv., 2022, 1, 100087. doi: 10.1016/j.focha.2022.100087
- Samtiya, M.; Samtiya, S.; Badgujar, P.C.; Puniya, A.K.; Dhewa, T.; Aluko, R.E. Health-promoting and therapeutic attributes of milk-derived bioactive peptides. Nutrients, 2022, 14(15), 3001. doi: 10.3390/nu14153001 PMID: 35893855
- Li, Y.; Jin, T.; Liu, N.; Wang, J.; Qin, Z.; Yin, S.; Zhang, Y.; Fu, Z.; Wu, Y.; Wang, Y.; Liu, Y.; Yang, M.; Pang, A.; Sun, J.; Wang, Y.; Yang, X. A short peptide exerts neuroprotective effects on cerebral ischemiareperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. J. Neuroinflammation, 2023, 20(1), 53. doi: 10.1186/s12974-023-02739-4 PMID: 36593485
- Urbán, N.; Guillemot, F. Neurogenesis in the embryonic and adult brain: Same regulators, different roles. Front. Cell. Neurosci., 2014, 8, 396. PMID: 25505873
- Huang, M.; Chen, S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog. Neurobiol., 2021, 204, 102114. doi: 10.1016/j.pneurobio.2021.102114 PMID: 34174373
- Fang, P.; Kazmi, S.A.; Jameson, K.G.; Hsiao, E.Y. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe, 2020, 28(2), 201-222. doi: 10.1016/j.chom.2020.06.008 PMID: 32791113
- Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci. Technol., 2021, 117, 205-217. doi: 10.1016/j.tifs.2021.05.005
- Hao, J.J.; Hao, L.L. Review of clinical applications of scalp acupuncture for paralysis: An excerpt from chinese scalp acupuncture. Glob. Adv. Health Med., 2012, 1(1), 102-121. doi: 10.7453/gahmj.2012.1.1.017 PMID: 24278807
- Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; DAdamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; Puzzo, D.; Arancio, O. Role of amyloid-β and tau proteins in alzheimers disease: Confuting the amyloid cascade. J. Alzheimers Dis., 2018, 64(S1), S611-S631. doi: 10.3233/JAD-179935 PMID: 29865055
- Dhikav, V.; Anand, K.S. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol., 2012, 15(4), 239-246. doi: 10.4103/0972-2327.104323 PMID: 23349586
- Jahn, H. Memory loss in Alzheimers disease. Dialogues Clin. Neurosci., 2013, 15(4), 445-454. doi: 10.31887/DCNS.2013.15.4/hjahn PMID: 24459411
- DeMaagd, G.; Philip, A. Parkinsons disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Therapeut., 2015, 40(8), 504-532. PMID: 26236139
- Bartels, A.L.; Leenders, K.L. Parkinsons disease: The syndrome, the pathogenesis and pathophysiology. Cortex, 2009, 45(8), 915-921. doi: 10.1016/j.cortex.2008.11.010 PMID: 19095226
- Giguère, N.; Nanni, B.S.; Trudeau, L.E. On cell loss and selective vulnerability of neuronal populations in Parkinsons disease. Front. Neurol., 2018, 9, 455. doi: 10.3389/fneur.2018.00455 PMID: 29971039
- Ashraf, G.; Greig, N.; Khan, T.; Hassan, I.; Tabrez, S.; Shakil, S.; Sheikh, I.; Zaidi, S.; Akram, M.; Jabir, N.; Firoz, C.; Naeem, A.; Alhazza, I.; Damanhouri, G.; Kamal, M. Protein misfolding and aggregation in Alzheimers disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(7), 1280-1293. doi: 10.2174/1871527313666140917095514 PMID: 25230234
- Kins, S.; Lauther, N.; Szodorai, A.; Beyreuther, K. Subcellular trafficking of the amyloid precursor protein gene family and its pathogenic role in Alzheimers disease. Neurodegener. Dis., 2006, 3(4-5), 218-226. doi: 10.1159/000095259 PMID: 17047360
- Sheikh, S.; Safia; Haque, E.; Mir, S.S. Neurodegenerative diseases: Multifactorial conformational diseases and their therapeutic interventions. J. Neurodegener. Dis., 2013, 2013, 1-8. doi: 10.1155/2013/563481
- Parsons, M.P.; Raymond, L.A. Huntington Disease, 2nd ed; StatPearls Publishing: Treasure Island (FL), 2023, pp. 275-292.
- Paulsen, J.S. Cognitive impairment in Huntington disease: Diagnosis and treatment. Curr. Neurol. Neurosci. Rep., 2011, 11(5), 474-483. doi: 10.1007/s11910-011-0215-x PMID: 21861097
- Labbadia, J.; Morimoto, R.I. Huntingtons disease: Underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci., 2013, 38(8), 378-385. doi: 10.1016/j.tibs.2013.05.003 PMID: 23768628
- Kim, A.; Lalonde, K.; Truesdell, A.; Welter, G.P.; Brocardo, P.S.; Rosenstock, T.R.; Mohapel, G.J. New avenues for the treatment of huntingtons disease. Int. J. Mol. Sci., 2021, 22(16), 8363. doi: 10.3390/ijms22168363 PMID: 34445070
- Mühlbӓck, A.; van Walsem, M.; Nance, M.; Arnesen, A.; Page, K.; Fisher, A.; van Kampen, M.; Nuzzi, A.; Limpert, R.; Fossmo, H.L.; Cruickshank, T.; Veenhuizen, R. What we dont need to prove but need to do in multidisciplinary treatment and care in Huntingtons disease: A position paper. Orphanet J. Rare Dis., 2023, 18(1), 19. doi: 10.1186/s13023-023-02622-8 PMID: 36717864
- Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int., 2015, 6(1), 171. doi: 10.4103/2152-7806.169561 PMID: 26629397
- Suzuki, N.; Nishiyama, A.; Warita, H.; Aoki, M. Genetics of amyotrophic lateral sclerosis: Seeking therapeutic targets in the era of gene therapy. J. Hum. Genet., 2023, 68(3), 131-152. doi: 10.1038/s10038-022-01055-8 PMID: 35691950
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929. doi: 10.1111/ene.14393 PMID: 32526057
- Blokhuis, A.M.; Groen, E.J.N.; Koppers, M.; van den Berg, L.H.; Pasterkamp, R.J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol., 2013, 125(6), 777-794. doi: 10.1007/s00401-013-1125-6 PMID: 23673820
- Mortada, I.; Farah, R.; Nabha, S.; Ojcius, D.M.; Fares, Y.; Almawi, W.Y.; Sadier, N.S. Immunotherapies for neurodegenerative diseases. Front. Neurol., 2021, 12, 654739. doi: 10.3389/fneur.2021.654739 PMID: 34163421
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments for Alzheimers disease. Ther. Adv. Neurol. Disord., 2013, 6(1), 19-33. doi: 10.1177/1756285612461679 PMID: 23277790
- Ali, R.; Gupta, G.D.; Chawla, P.A. Aducanumab: A new hope in Alzheimers disease. Health Sci. Rep., 2022, 4, 100039. doi: 10.1016/j.hsr.2022.100039
- Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Sharma, N.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Felemban, S.G.; Alsubayiel, A.M.; Bhatia, S.; Bungau, S. "Aducanumab" making a comeback in Alzheimers disease: An old wine in a new bottle. Biomed. Pharmacother., 2022, 148, 112746. doi: 10.1016/j.biopha.2022.112746 PMID: 35231697
- Imbimbo, B.P.; Ippati, S.; Watling, M.; Imbimbo, C. Role of monomeric amyloid-β in cognitive performance in Alzheimers disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol. Res., 2023, 187, 106631. doi: 10.1016/j.phrs.2022.106631 PMID: 36586644
- Ji, C.; Sigurdsson, E.M. Current status of clinical trials on tau immunotherapies. Drugs, 2021, 81(10), 1135-1152. doi: 10.1007/s40265-021-01546-6 PMID: 34101156
- Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimers disease: Getting on and staying on. Curr. Ther. Res. Clin. Exp., 2003, 64(4), 216-235. doi: 10.1016/S0011-393X(03)00059-6 PMID: 24944370
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimers disease. Neuropharmacology, 2021, 190, 108352. doi: 10.1016/j.neuropharm.2020.108352 PMID: 33035532
- Kandiah, N.; Pai, M.C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A.K.; Christopher, S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinsons disease dementia. Clin. Interv. Aging, 2017, 12, 697-707. doi: 10.2147/CIA.S129145 PMID: 28458525
- Esang, M.; Gupta, M. Aducanumab as a novel treatment for alzheimers disease: A decade of hope, controversies, and the future. Cureus, 2021, 13(8), e17591. doi: 10.7759/cureus.17591 PMID: 34646644
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of alzheimers disease: A focus on aducanumab and lecanemab. Front. Aging Neurosci., 2022, 14, 870517. doi: 10.3389/fnagi.2022.870517 PMID: 35493943
- Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimers disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048. doi: 10.3233/JAD-160763 PMID: 27662322
- Tariot, P.N.; Farlow, M.R.; Grossberg, G.T.; Graham, S.M.; McDonald, S.; Gergel, I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: A randomized controlled trial. JAMA, 2004, 291(3), 317-324. doi: 10.1001/jama.291.3.317 PMID: 14734594
- Paul, A.; Yadav, K.S. Parkinsons disease: Current drug therapy and unraveling the prospects of nanoparticles. J. Drug Deliv. Sci. Technol., 2020, 58, 101790. doi: 10.1016/j.jddst.2020.101790
- Ovallath, S.; Sulthana, B. Levodopa: History and therapeutic applications. Ann. Indian Acad. Neurol., 2017, 20(3), 185-189. doi: 10.4103/aian.AIAN_241_17 PMID: 28904446
- Kelley, BJ; Duker, AP; Chiu, P Dopamine agonists and pathologic behaviors. Parkinsons Dis., 2012, 2012, 603631. doi: 10.1155/2012/603631
- Emmady, P.D.; Schoo, C.; Tadi, P. Major neurocognitive disorder (Dementia). In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2022.
- Alghamdi, B.S. The neuroprotective role of melatonin in neurological disorders. J. Neurosci. Res., 2018, 96(7), 1136-1149. doi: 10.1002/jnr.24220 PMID: 29498103
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig., 2010, 1(1-2), 8-23. doi: 10.1111/j.2040-1124.2010.00022.x PMID: 24843404
- Aksoy, D.; Solmaz, V.; Çavuşoğlu, T.; Meral, A.; Ateş, U.; Erbaş, O. Neuroprotective effects of eexenatide in a rotenone-induced rat model of parkinsons disease. Am. J. Med. Sci., 2017, 354(3), 319-324. doi: 10.1016/j.amjms.2017.05.002 PMID: 28918840
- Grotemeyer, A.; McFleder, R.L.; Wu, J.; Wischhusen, J.; Ip, C.W. Neuroinflammation in parkinsons disease putative pathomechanisms and targets for disease-modification. Front. Immunol., 2022, 13, 878771. doi: 10.3389/fimmu.2022.878771 PMID: 35663989
- Kang, M.Y.; Oh, T.J.; Cho, Y.M. Glucagon-like peptide-1 increases mitochondrial biogenesis and function in INS-1 rat insulinoma cells. Endocrinol. Metab., 2015, 30(2), 216-220. doi: 10.3803/EnM.2015.30.2.216 PMID: 26194081
- Salcedo, I.; Tweedie, D.; Li, Y.; Greig, N.H. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br. J. Pharmacol., 2012, 166(5), 1586-1599. doi: 10.1111/j.1476-5381.2012.01971.x PMID: 22519295
- Glotfelty, E.J.; Olson, L.; Karlsson, T.E.; Li, Y.; Greig, N.H. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinsons disease. Expert Opin. Investig. Drugs, 2020, 29(6), 595-602. doi: 10.1080/13543784.2020.1764534 PMID: 32412796
- Karpiesiuk, A.; Palus, K. Pituitary adenylate cyclase-activating polypeptide (PACAP) in physiological and pathological processes within the gastrointestinal tract: A review. Int. J. Mol. Sci., 2021, 22(16), 8682. doi: 10.3390/ijms22168682 PMID: 34445388
- Hirabayashi, T.; Nakamachi, T.; Shioda, S. Discovery of PACAP and its receptors in the brain. J. Headache Pain, 2018, 19(1), 28. doi: 10.1186/s10194-018-0855-1 PMID: 29619773
- Dong, D.; Xie, J.; Wang, J. Neuroprotective effects of brain-gut peptides: A potential therapy for parkinsons disease. Neurosci. Bull., 2019, 35(6), 1085-1096. doi: 10.1007/s12264-019-00407-3 PMID: 31286411
- Johnson, M.B.; Young, A.D.; Marriott, I. The therapeutic potential of targeting substance P/NK-1R interactions in inflammatory CNS disorders. Front. Cell. Neurosci., 2016, 10, 296. PMID: 28101005
- Cherait, A.; Banks, W.A.; Vaudry, D. The potential of the nose-to-brain delivery of PACAP for the treatment of neuronal disease. Pharmaceutics, 2023, 15(8), 2032. doi: 10.3390/pharmaceutics15082032 PMID: 37631246
- Ramesh, N.; Mohan, H.; Unniappan, S. Nucleobindin-1 encodes a nesfatin-1-like peptide that stimulates insulin secretion. Gen. Comp. Endocrinol., 2015, 216, 182-189. doi: 10.1016/j.ygcen.2015.04.011 PMID: 25907657
- Ayada, C.; Toru, Ü.; Korkut, Y. Nesfatin-1 and its effects on different systems. Hippokratia, 2015, 19(1), 4-10. PMID: 26435639
- Esposito, E; Matteo, D.V; Benigno, A; Pierucci, M; Crescimanno, G; Giovanni, D.G Non-steroidal anti-inflammatory drugs in Parkinsons disease. Exp. Neurol., 2007, 205(2), 295-312. doi: 10.1016/j.expneurol.2007.02.008
- Shen, X.L.; Song, N.; Du, X.X.; Li, Y.; Xie, J.X.; Jiang, H. Nesfatin-1 protects dopaminergic neurons against MPP+/MPTP-induced neurotoxicity through the C-RafERK1/2-dependent anti-apoptotic pathway. Sci. Rep., 2017, 7(1), 40961. doi: 10.1038/srep40961
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42. doi: 10.1186/s40035-020-00221-2 PMID: 33239064
- Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinsons disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402(6762), 656-660. doi: 10.1038/45230 PMID: 10604470
- Akalu, Y; Molla, MD; Dessie, G; Ayelign, B Physiological effect of ghrelin on body systems. Int. J. Endocrinol., 2020, 2020, 1385138. doi: 10.1155/2020/1385138
- Russo, C.; Valle, M.S.; Russo, A.; Malaguarnera, L. The interplay between ghrelin and microglia in neuroinflammation: Implications for obesity and neurodegenerative diseases. Int. J. Mol. Sci., 2022, 23(21), 13432. doi: 10.3390/ijms232113432 PMID: 36362220
- Sanchez, J.M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntingtons Disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240. doi: 10.1101/cshperspect.a024240 PMID: 27940602
- De Tommaso, M.; Serpino, C.; Sciruicchio, V. Management of Huntingtons disease: Role of tetrabenazine. Ther. Clin. Risk Manag., 2011, 7, 123-129. doi: 10.2147/TCRM.S17152 PMID: 21479143
- Ding, J; Gadit, AM Psychosis with Huntington's disease: Role of antipsychotic medications. BMJ Case Rep., 2014, 2014, bcr2013202625.
- Dong, X.; Wang, Y.; Qin, Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387. doi: 10.1038/aps.2009.24 PMID: 19343058
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 6(6), 1164-1178. doi: 10.5114/aoms.2015.56342 PMID: 26788077
- Alkanli, S.S.; Alkanli, N.; Ay, A.; Albeniz, I. CRISPR/Cas9 mediated therapeutic approach in Huntingtons Disease. Mol. Neurobiol., 2023, 60(3), 1486-1498. doi: 10.1007/s12035-022-03150-5 PMID: 36482283
- Yang, S.; Chang, R.; Yang, H.; Zhao, T.; Hong, Y.; Kong, H.E.; Sun, X.; Qin, Z.; Jin, P.; Li, S.; Li, X.J. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntingtons disease. J. Clin. Invest., 2017, 127(7), 2719-2724. doi: 10.1172/JCI92087 PMID: 28628038
- Berlet, R.; Anthony, S.; Brooks, B.; Wang, Z.J.; Sadanandan, N.; Shear, A.; Cozene, B.; Portillo, G.B.; Parsons, B.; Salazar, F.E.; Toledo, L.A.R.; Monroy, G.R.; Portillo, G.J.V.; Borlongan, C.V. Combination of stem cells and rehabilitation therapies for ischemic stroke. Biomolecules, 2021, 11(9), 1316. doi: 10.3390/biom11091316 PMID: 34572529
- Vazin, T.; Freed, W.J. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor. Neurol. Neurosci., 2010, 28(4), 589-603. doi: 10.3233/RNN-2010-0543 PMID: 20714081
- Rajput, A.; Varshney, A.; Bajaj, R.; Pokharkar, V. Exosomes as new generation vehicles for drug delivery: Biomedical applications and future perspectives. Molecules, 2022, 27(21), 7289. doi: 10.3390/molecules27217289 PMID: 36364116
- Saba, J.; Couselo, F.L.; Bruno, J.; Carniglia, L.; Durand, D.; Lasaga, M.; Caruso, C. Neuroinflammation in Huntingtons Disease: A starring role for astrocyte and microglia. Curr. Neuropharmacol., 2022, 20(6), 1116-1143. doi: 10.2174/1570159X19666211201094608 PMID: 34852742
- Nowicka, N.; Juranek, J.; Juranek, J.K.; Wojtkiewicz, J. Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2019, 20(11), 2616. doi: 10.3390/ijms20112616 PMID: 31141951
- Okada, M.; Yamashita, S.; Ueyama, H.; Ishizaki, M.; Maeda, Y.; Ando, Y. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis. eNeurologicalSci, 2018, 11, 11-14. doi: 10.1016/j.ensci.2018.05.001 PMID: 29928711
- Mouhammad, Z.A.; Vohra, R.; Horwitz, A.; Thein, A.S.; Rovelt, J.; Cvenkel, B.; Williams, P.A.; Blanco, A.A.; Kolko, M. Glucagon-like peptide 1 receptor agonists potential game changers in the treatment of glaucoma? Front. Neurosci., 2022, 16, 824054. doi: 10.3389/fnins.2022.824054 PMID: 35264926
- Wang, S.; Sun-Waterhouse, D.; Neil Waterhouse, G.I.; Zheng, L.; Su, G.; Zhao, M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci. Technol., 2021, 116, 712-732. doi: 10.1016/j.tifs.2021.04.056
- Yeo, X.Y.; Cunliffe, G.; Ho, R.C.; Lee, S.S.; Jung, S. Potentials of neuropeptides as therapeutic agents for Neurological Diseases. Biomedicines, 2022, 10(2), 343. doi: 10.3390/biomedicines10020343 PMID: 35203552
- Sakthiswary, R.; Raymond, A.A. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regen. Res., 2012, 7(23), 1822-1831. PMID: 25624807
- Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci., 2019, 20(10), 2383. doi: 10.3390/ijms20102383 PMID: 31091705
- Strafella, C.; Caputo, V.; Galota, M.R.; Zampatti, S.; Marella, G.; Mauriello, S.; Cascella, R.; Giardina, E. Application of precision medicine in Neurodegenerative Diseases. Front. Neurol., 2018, 9, 701. doi: 10.3389/fneur.2018.00701 PMID: 30190701
- Malviya, R.; Singh, A.K.; Verma, S. Personalized medicine: Advanced treatment strategies to revolutionize healthcare. Curr. Drug Res. Rev., 2023, 15(2), 101-104. doi: 10.2174/2589977515666221104152641 PMID: 36336809
- Mahdieh, N.; Rabbani, B. An overview of mutation detection methods in genetic disorders. Iran. J. Pediatr., 2013, 23(4), 375-388. PMID: 24427490
- Mathur, S.; Sutton, J. Personalized medicine could transform healthcare. Biomed. Rep., 2017, 7(1), 3-5. doi: 10.3892/br.2017.922 PMID: 28685051
- Raghunathan, R.; Turajane, K.; Wong, L.C. Biomarkers in neurodegenerative diseases: Proteomics spotlight on ALS and Parkinsons Disease. Int. J. Mol. Sci., 2022, 23(16), 9299. doi: 10.3390/ijms23169299 PMID: 36012563
- Li, L.; Wu, J.; Lyon, C.J.; Jiang, L.; Hu, T.Y. Clinical peptidomics: Advances in instrumentation, analyses, and applications. BME Front., 2023, 4, 0019.
- Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; DAgostino, Y.; Salvati, A.; Del Giudice, C.; Tesorio, P.; Rusciano, M.R. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes, 2020, 11(7), 747. doi: 10.3390/genes11070747 PMID: 32640513
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Saleh, B.K.; Badreldin, H.A.; Yami, A.M.S.; Harbi, A.S.; Albekairy, A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ., 2023, 23(1), 689. doi: 10.1186/s12909-023-04698-z PMID: 37740191
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril., 2018, 109(6), 952-963. doi: 10.1016/j.fertnstert.2018.05.006 PMID: 29935653
- Stoddard, H.B.M.; Smith, J.J. Precision medicine clinical trials: Defining new treatment strategies. Semin. Oncol. Nurs., 2014, 30(2), 109-116. doi: 10.1016/j.soncn.2014.03.004 PMID: 24794084
- Chen, W.; Hu, Y.; Ju, D. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm. Sin. B, 2020, 10(8), 1347-1359. doi: 10.1016/j.apsb.2020.01.015 PMID: 32963936
- Gupta, J.K.; Singh, K. Pharmacological potential of bioactive peptides for the treatment of diseases associated with alzheimers and brain disorders. Curr. Mol. Med., 2023, 2023, 23. PMID: 37691200
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci., 2022, 23(3), 1445. doi: 10.3390/ijms23031445 PMID: 35163367
- Zaky, A.A.; Gandara, S.J.; Eun, J.B.; Shim, J.H.; Aty, A.E.A.M. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr., 2021, 8, 815640. PMID: 35127796
- Pilozzi, A.; Carro, C.; Huang, X. Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. Int. J. Mol. Sci., 2020, 22(1), 338. doi: 10.3390/ijms22010338 PMID: 33396962
- Klein, J.A.; Ackerman, S.L. Oxidative stress, cell cycle, and neurodegeneration. J. Clin. Invest., 2003, 111(6), 785-793. doi: 10.1172/JCI200318182 PMID: 12639981
- Lee, S.Y.; Hur, S.J. Mechanisms of neuroprotective effects of peptides derived from natural materials and their production and assessment. Compr. Rev. Food Sci. Food Saf., 2019, 18(4), 923-935. doi: 10.1111/1541-4337.12451 PMID: 33336993
- Ögren, S.O.; Kuteeva, E.; Tottie, E.E.; Hökfelt, T. Neuropeptides in learning and memory processes with focus on galanin. Eur. J. Pharmacol., 2010, 626(1), 9-17. doi: 10.1016/j.ejphar.2009.09.070 PMID: 19837050
- Hayes, M.; Tiwari, B. Bioactive carbohydrates and peptides in foods: an overview of sources, downstream processing steps and associated bioactivities. Int. J. Mol. Sci., 2015, 16(9), 22485-22508. doi: 10.3390/ijms160922485 PMID: 26393573
- Sim, A.Y.; Barua, S.; Kim, J.Y.; Lee, Y.; Lee, J.E. Role of DPP-4 and SGLT2 inhibitors connected to alzheimer disease in type 2 diabetes mellitus. Front. Neurosci., 2021, 15, 708547. doi: 10.3389/fnins.2021.708547 PMID: 34489627
- Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235. doi: 10.1038/aps.2017.28 PMID: 28713158
- Stefanis, L. α-Synuclein in Parkinsons disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399. doi: 10.1101/cshperspect.a009399 PMID: 22355802
- Ibrahim, A.M.; Chauhan, L.; Bhardwaj, A.; Sharma, A.; Fayaz, F.; Kumar, B.; Alhashmi, M.; AlHajri, N.; Alam, M.S.; Pottoo, F.H. Brain-derived neurotropic factor in neurodegenerative disorders. Biomedicines, 2022, 10(5), 1143. doi: 10.3390/biomedicines10051143 PMID: 35625880
- Olufunmilayo, E.O.; Duncan, G.M.B.; Holsinger, R.M.D. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants, 2023, 12(2), 517. doi: 10.3390/antiox12020517 PMID: 36830075
- Ge, L.; Liu, S.; Rubin, L.; Lazarovici, P.; Zheng, W. Research progress on neuroprotection of insulin-like growth factor-1 towards glutamate-induced neurotoxicity. Cells, 2022, 11(4), 666. doi: 10.3390/cells11040666 PMID: 35203315
- Mykicki, N.; Herrmann, A.M.; Schwab, N.; Deenen, R.; Sparwasser, T.; Limmer, A.; Wachsmuth, L.; Klotz, L.; Köhrer, K.; Faber, C.; Wiendl, H.; Luger, T.A.; Meuth, S.G.; Loser, K. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease. Sci. Transl. Med., 2016, 8(362), 362ra146. doi: 10.1126/scitranslmed.aaf8732 PMID: 27797962
- Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Front. Neurosci., 2019, 13, 869. doi: 10.3389/fnins.2019.00869 PMID: 31481869
- Wang, Q.; Cao, F.; Wu, Y. Orexinergic system in neurodegenerative diseases. Front. Aging Neurosci., 2021, 13, 713201. doi: 10.3389/fnagi.2021.713201 PMID: 34483883
- Liguz-Lecznar, M.; Dobrzanski, G.; Kossut, M. Somatostatin and somatostatin-containing interneuronsFrom plasticity to pathology. Biomolecules, 2022, 12(2), 312. doi: 10.3390/biom12020312 PMID: 35204812
- Lundström, L.; Elmquist, A.; Bartfai, T.; Langel, Ü. Galanin and its receptors in neurological disorders. Neuromolecular Med., 2005, 7(1-2), 157-180. doi: 10.1385/NMM:7:1-2:157 PMID: 16052044
- Delgado, M.; Ganea, D. Vasoactive intestinal peptide: A neuropeptide with pleiotropic immune functions. Amino Acids, 2013, 45(1), 25-39. doi: 10.1007/s00726-011-1184-8 PMID: 22139413
- Maasz, G.; Zrinyi, Z.; Reglodi, D.; Petrovics, D.; Rivnyak, A.; Kiss, T.; Jungling, A.; Tamas, A.; Pirger, Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis. Model. Mech., 2017, 10(2), 127-139. PMID: 28067625
- Frago, L.; Baquedano, E.; Argente, J.; Chowen, J.A. Neuroprotective actions of ghrelin and growth hormone secretagogues. Front. Mol. Neurosci., 2011, 4, 23. doi: 10.3389/fnmol.2011.00023 PMID: 21994488
- Signore, A.P.; Zhang, F.; Weng, Z.; Gao, Y.Q.; Chen, J. Leptin neuroprotection in the central nervous system: Mechanisms and therapeutic potentials. J. Neurochem., 2008, 106(5), 1977. doi: 10.1111/j.1471-4159.2008.05457.x PMID: 18466320
- Carson, M.J.; Thrash, C.J.; Walter, B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin. Neurosci. Res., 2006, 6(5), 237-245. doi: 10.1016/j.cnr.2006.09.004 PMID: 19169437
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
- Johnson, H.J.; Koshy, A.A. Understanding neuroinflammation through central nervous system infections. Curr. Opin. Neurobiol., 2022, 76, 102619. doi: 10.1016/j.conb.2022.102619 PMID: 35985075
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 291. doi: 10.1038/s41392-021-00687-0 PMID: 34344870
- Lee, YS; Jun, HS Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm., 2016, 2016
- Gokhale, A.S.; Satyanarayanajois, S. Peptides and peptidomimetics as immunomodulators. Immunotherapy, 2014, 6(6), 755-774. doi: 10.2217/imt.14.37 PMID: 25186605
- Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 2004, 68(2), 320-344. doi: 10.1128/MMBR.68.2.320-344.2004 PMID: 15187187
- Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-κB signaling in inflammation and cancer. MedComm., 2021, 2(4), 618-653. doi: 10.1002/mco2.104 PMID: 34977871
- Boldin, R.; Zychar, B.C.; Gonçalves, L.R.C.; Sciani, J.M. Design, in silico and pharmacological evaluation of a peptide inhibitor of BACE-1. Front. Pharmacol., 2023, 14, 1184006. doi: 10.3389/fphar.2023.1184006 PMID: 37397495
- Peighambardoust, S.H.; Karami, Z.; Pateiro, M.; Lorenzo, J.M. A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules, 2021, 11(5), 631. doi: 10.3390/biom11050631 PMID: 33922830
- Angeloni, C.; Malaguti, M.; Prata, C.; Freschi, M.; Barbalace, M.; Hrelia, S. Mechanisms underlying neurodegenerative disorders and potential neuroprotective activity of agrifood by-products. Antioxidants, 2022, 12(1), 94. doi: 10.3390/antiox12010094 PMID: 36670956
- Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. doi: 10.2174/157015909787602823 PMID: 19721819
- Jeremic, D.; Díaz, J.L.; López, N.J.D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimers disease: A systematic review. Ageing Res. Rev., 2021, 72, 101496. doi: 10.1016/j.arr.2021.101496 PMID: 34687956
- Kour, A.; Dube, T.; Kumar, A.; Panda, J.J. Anti-amyloidogenic and fibril-disaggregating potency of the levodopa-functionalized gold nanoroses as exemplified in a diphenylalanine-based amyloid model. Bioconjug. Chem., 2022, 33(2), 397-410. doi: 10.1021/acs.bioconjchem.2c00007 PMID: 35120290
- Wang, R.; Zhang, Y.; Guo, Y.; Zeng, W.; Li, J.; Wu, J. Plant-derived nanovesicles: Promising therapeutics and drug delivery nanoplatforms for brain disorders. In: Fundamental Research; , 2023.
- Pajares, M.; I Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in parkinsons disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687. doi: 10.3390/cells9071687 PMID: 32674367
- Valadão, P.A.C.; Santos, K.B.S.; Vieira, F.T.H.; e Cordeiro, M.T.; Teixeira, A.L.; Guatimosim, C.; De Miranda, A.S. Inflammation in Huntingtons disease: A few new twists on an old tale. J. Neuroimmunol., 2020, 348, 577380. doi: 10.1016/j.jneuroim.2020.577380 PMID: 32896821
- Calderón, T.P.A.; Chinchilla, V.C.D.; Lara, G.S. Natural peptides inducing cancer cell death: Mechanisms and properties of specific candidates for cancer therapeutics. Molecules, 2021, 26(24), 7453. doi: 10.3390/molecules26247453 PMID: 34946535
- Wu, S.; Bekhit, A.E.D.A.; Wu, Q.; Chen, M.; Liao, X.; Wang, J.; Ding, Y. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci. Technol., 2021, 108, 164-176. doi: 10.1016/j.tifs.2020.12.019
- Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol., 2017, 174(11), 1378-1394. doi: 10.1111/bph.13608 PMID: 27572703
- Wang, J.; Wu, Y.; Chen, Z.; Chen, Y.; Lin, Q.; Liang, Y. Exogenous bioactive peptides have a potential therapeutic role in delaying aging in rodent models. Int. J. Mol. Sci., 2022, 23(3), 1421. doi: 10.3390/ijms23031421 PMID: 35163342
- Balakrishnan, R.; Cho, D.Y.; Kim, I.S.; Seol, S.H.; Choi, D.K. Molecular mechanisms and therapeutic potential of α- and β-asarone in the treatment of neurological disorders. Antioxidants, 2022, 11(2), 281. doi: 10.3390/antiox11020281 PMID: 35204164
- Cardoso, M.H.; Orozco, R.Q.; Rezende, S.B.; Rodrigues, G.; Oshiro, K.G.N.; Cândido, E.S.; Franco, O.L. Computer-aided design of antimicrobial peptides: Are we generating effective drug candidates? Front. Microbiol., 2020, 10, 3097. doi: 10.3389/fmicb.2019.03097 PMID: 32038544
- Moir, R.D.; Lathe, R.; Tanzi, R.E. The antimicrobial protection hypothesis of Alzheimers disease. Alzheimers Dement., 2018, 14(12), 1602-1614. doi: 10.1016/j.jalz.2018.06.3040 PMID: 30314800
- Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204. doi: 10.3389/fchem.2018.00204 PMID: 29922648
- Lee, E.Y.; Chan, L.C.; Wang, H.; Lieng, J.; Hung, M.; Srinivasan, Y.; Wang, J.; Waschek, J.A.; Ferguson, A.L.; Lee, K.F.; Yount, N.Y.; Yeaman, M.R.; Wong, G.C.L. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc. Natl. Acad. Sci., 2021, 118(1), e1917623117. doi: 10.1073/pnas.1917623117 PMID: 33372152
- Toda, H.; Williams, J.A.; Gulledge, M.; Sehgal, A. A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science, 2019, 363(6426), 509-515. doi: 10.1126/science.aat1650 PMID: 30705188
- Augustin, R.; Schröder, K.; Rincón, M.A.P.; Fraune, S.; Erxleben, A.F.; Herbst, E.M.; Wittlieb, J.; Schwentner, M.; Grötzinger, J.; Wassenaar, T.M.; Bosch, T.C.G. A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nat. Commun., 2017, 8(1), 698. doi: 10.1038/s41467-017-00625-1 PMID: 28951596
- Barajas-Azpeleta, R.; Wu, J.; Gill, J.; Welte, R.; Seidel, C.; McKinney, S.; Dissel, S.; Si, K. Antimicrobial peptides modulate long-term memory. PLoS Genet., 2018, 14(10), e1007440. doi: 10.1371/journal.pgen.1007440 PMID: 30312294
- Guaní-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol., 2010, 135(1), 1-11. doi: 10.1016/j.clim.2009.12.004 PMID: 20116332
- Hanson, M.A.; Lemaitre, B. New insights on drosophila antimicrobial peptide function in host defense and beyond. Curr. Opin. Immunol., 2020, 62, 22-30. doi: 10.1016/j.coi.2019.11.008 PMID: 31835066
- Swanson, L.C.; Rimkus, S.A.; Ganetzky, B.; Wassarman, D.A. Loss of the antimicrobial peptide metchnikowin protects against traumatic brain injury outcomes in Drosophila melanogaster. G3: Genes, Genomes. Genetics, 2020, 10(9), 3109-3119. doi: 10.1534/g3.120.401377 PMID: 32631949
- Maezawa, I.; Zimin, P.I.; Wulff, H.; Jin, L.W. Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J. Biol. Chem., 2011, 286(5), 3693-3706. doi: 10.1074/jbc.M110.135244 PMID: 20971854
- Schröder, N.; Schaffrath, A.; Welter, J.A.; Putzka, T.; Griep, A.; Ziegler, P.; Brandt, E.; Samer, S.; Heneka, M.T.; Kaddatz, H.; Zhan, J.; Kipp, E.; Pufe, T.; Tauber, S.C.; Kipp, M.; Brandenburg, L.O. Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. J. Neuroinflammation, 2020, 17(1), 131. doi: 10.1186/s12974-020-01816-2 PMID: 32331524
- De Lorenzi, E.; Chiari, M.; Colombo, R.; Cretich, M.; Sola, L.; Vanna, R.; Gagni, P.; Bisceglia, F.; Morasso, C.; Lin, J.S.; Lee, M.; McGeer, P.L.; Barron, A.E. Evidence that the human innate immune peptide LL-37 may be a binding partner of amyloid-β and inhibitor of fibril assembly. J. Alzheimers Dis., 2017, 59(4), 1213-1226. doi: 10.3233/JAD-170223 PMID: 28731438
- Beatman, E.L.; Massey, A.; Shives, K.D.; Burrack, K.S.; Chamanian, M.; Morrison, T.E.; Beckham, J.D. Alpha-synuclein expression restricts RNA viral infections in the brain. J. Virol., 2016, 90(6), 2767-2782. doi: 10.1128/JVI.02949-15 PMID: 26719256
- Kounatidis, I.; Chtarbanova, S.; Cao, Y.; Hayne, M.; Jayanth, D.; Ganetzky, B.; Ligoxygakis, P. NF-κB immunity in the brain determines fly lifespan in healthy aging and age-related neurodegeneration. Cell Rep., 2017, 19(4), 836-848. doi: 10.1016/j.celrep.2017.04.007 PMID: 28445733
- AlMatar, M.; Albarri, O.; lakhal, R.; Ocal, M.M.; Var, I.; Köksal, F. Bacterial pathogens: Potential source for antimicrobial peptides. Curr. Protein Pept. Sci., 2023, 24(7), 551-566. doi: 10.2174/1389203724666230726100303 PMID: 37496250
- E., Lazi; Zhou, T.; Koh, S.; Chuang, M.; Sharma, R.; Pujol, N.; Chisholm, A.D.; Eroglu, C.; Matsunami, H.; Yan, D. An antimicrobial peptide and its neuronal receptor regulate dendrite degeneration in aging and infection. Neuron, 2018, 97(1), 125-138.e5. doi: 10.1016/j.neuron.2017.12.001 PMID: 29301098
- AlMatar, M.; Makky, E.A.; Yakıcı, G.; Var, I.; Kayar, B.; Köksal, F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol. Res., 2018, 128, 288-305. doi: 10.1016/j.phrs.2017.10.011 PMID: 29079429
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a033118. doi: 10.1101/cshperspect.a033118 PMID: 28716886
- Zhao, L.; Li, D.; Qi, X.; Guan, K.; Chen, H.; Wang, R.; Ma, Y. Potential of food-derived bioactive peptides in alleviation and prevention of Alzheimers disease. Food Funct., 2022, 13(21), 10851-10869. doi: 10.1039/D2FO02278H PMID: 36219143
- Siafaka, P.I.; Okur, M.E.; Erim, P.D.; Çağlar, E.Ş.; Özgenç, E.; Gündoğdu, E.; Köprülü, R.E.P.; Karantas, I.D.; Okur, U.N. Protein and gene delivery systems for neurodegenerative disorders: Where do we stand today? Pharmaceutics, 2022, 14(11), 2425. doi: 10.3390/pharmaceutics14112425 PMID: 36365243
- Bhattacharya, T.; Soares, G.A.B.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials, 2022, 15(3), 804. doi: 10.3390/ma15030804 PMID: 35160749
- Arafah, A.; Khatoon, S.; Rasool, I.; Khan, A.; Rather, M.A.; Abujabal, K.A.; Faqih, Y.A.H.; Rashid, H.; Rashid, S.M.; Ahmad, B.S.; Alexiou, A.; Rehman, M.U. The future of precision medicine in the cure of alzheimers disease. Biomedicines, 2023, 11(2), 335. doi: 10.3390/biomedicines11020335 PMID: 36830872
- Nayab, D.E.; Din, F.; Ali, H.; Kausar, W.A.; Urooj, S.; Zafar, M.; Khan, I.; Shabbir, K.; Khan, G.M. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: An up-to-date perspective. J. Nanobiotechnology, 2023, 21(1), 477. doi: 10.1186/s12951-023-02250-1 PMID: 38087359
- Nguyen, T.T.; Dung Nguyen, T.T.; Vo, T.K.; Tran, N.M.A.; Nguyen, M.K.; Van Vo, T.; Van Vo, G. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother., 2021, 143, 112117. doi: 10.1016/j.biopha.2021.112117 PMID: 34479020
- Dedeoglu, A.; Kubilus, J.K.; Yang, L.; Ferrante, K.L.; Hersch, S.M.; Beal, M.F.; Ferrante, A.R.J. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntingtons disease transgenic mice. J. Neurochem., 2003, 85(6), 1359-1367. doi: 10.1046/j.1471-4159.2003.01706.x PMID: 12787055
- Ezaki, M.; Baek, G.H.; Horii, E.; Hovius, S. IFSSH scientific committee on congenital conditions. J. Hand Surg. Eur. Vol., 2014, 39(6), 676-678. doi: 10.1177/1753193414526334 PMID: 24939554
- Kasatkina, L.A.; Rittchen, S.; Sturm, E.M. Neuroprotective and immunomodulatory action of the endocannabinoid system under neuroinflammation. Int. J. Mol. Sci., 2021, 22(11), 5431. doi: 10.3390/ijms22115431 PMID: 34063947
Arquivos suplementares
