Spectroscopic Analysis of the Effect of Ibuprofen Degradation Products on the Interaction between Ibuprofen and Human Serum Albumin


如何引用文章

全文:

详细

Background:Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most commonly used groups of medicinal compounds in the world. The wide access to NSAIDs and the various ways of storing them due to their easy accessibility often entail the problem with the stability and durability resulting from the exposure of drugs to external factors. The aim of the research was to evaluate in vitro the mechanism of competition between ibuprofen (IBU) and its degradation products, i.e., 4'-isobutylacetophenone (IBAP) and (2RS)-2-(4- formylphenyl)propionic acid (FPPA) during transport in a complex with fatted (HSA) and defatted (dHSA) human serum albumin.

Methods:The research was carried out using spectroscopic techniques, such as spectrophotometry, infrared spectroscopy and nuclear magnetic resonance spectroscopy

Results:The comprehensive application of spectroscopic techniques allowed, among others, for the determination of the binding constant, the number of classes of binding sites and the cooperativeness constant of the analyzed systems IBU-(d)HSA, IBU-(d)HSA-FPPA, IBU-(d)HSA-IBAP; the determination of the effect of ibuprofen and its degradation products on the secondary structure of albumin; identification and assessment of interactions between ligand and albumin; assessment of the impact of the presence of fatty acids in the structure of albumin and the measurement temperature on the binding of IBU, IBAP and FPPA to (d)HSA.

Conclusion:The conducted research allowed us to conclude that the presence of ibuprofen degradation products and the increase in their concentration significantly affect the formation of the IBU-albumin complex and thus, the value of the association constant of the drug, changing the concentration of its free fraction in the blood plasma. It was also found that the presence of an ibuprofen degradation product in a complex with albumin affects its secondary structure.

作者简介

Anna Ploch-Jankowska

Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Kostowski, W.; Herman, Z.S. Farmakologia; Wydawnictwo Lekarskie PZWL: Warszawa, 2008.
  2. Czyrski, A.; Kazińska, I. Nonsteroidal anti-inflammatory drugs derived from 2-arylpropionic acid. Gazeta Farmaceutyczna, 2013, 22(4), 28-30.
  3. Paulose-Ram, R.; Hirsch, R.; Dillon, C.; Gu, Q. Frequent monthly use of selected non-prescription and prescription non-narcotic analgesics among U.S. adults. Pharmacoepidemiol. Drug Saf., 2005, 14(4), 257-266. doi: 10.1002/pds.983 PMID: 15386703
  4. Amin, M.O.; Al-Hetlani, E.; Lednev, I.K. Stability of nonsteroidal anti-inflammatory drugs in contaminated fingermarks probed by Raman Spectroscopy: Effect of temperature and time since deposition. Forensic Chem., 2022, 31, 100457. doi: 10.1016/j.forc.2022.100457
  5. Rangel-Yagui, C.O.; Hsu, H.W.L.; Pessoa-Jr, A.; Tavares, L.C. Micellar solubilization of ibuprofen: Influence of surfactant head groups on the extent of solubilization. RBCF Rev. Bras. Cienc. Farm., 2005, 41(2), 237-246. doi: 10.1590/S1516-93322005000200012
  6. Bushra, R.; Aslam, N. An overview of clinical pharmacology of Ibuprofen. Oman Med. J., 2010, 25(3), 155-161. doi: 10.5001/omj.2010.49 PMID: 22043330
  7. Amirimoghadam, P.; Zihayat, B.; Dabaghzadeh, F.; Kiani, K.; Ebrahimi, J.; Ghazanfari, M. Evaluation and awareness of over the counter use of non-steroidal anti-inflammatory drugs? J. Appl. Pharm. Sci., 2017, 7(3), 154-159.
  8. Bradbury, F. How important is the role of the physician in the correct use of a drug? An observational cohort study in general practice. Int. J. Clin. Pract., 2004, 58(144), 27-32. doi: 10.1111/j.1742-1241.2004.027_e.x PMID: 16035400
  9. Kaoru, N. Flurbiprofen: Highly potent inhibitor of prostaglandin synthesis. Biochim. Biophys. Acta Lipids Lipid Metab., 1978, 529(3), 493-496. doi: 10.1016/0005-2760(78)90093-0 PMID: 96864
  10. Adams, S.S.; McCullough, K.F.; Nicholson, J.S. The pharmacological properties of ibuprofen, an anti-inflammatory, analgesic and antipyretic agent. Arch. Int. Pharmacodyn. Ther., 1969, 178(1), 115-129. PMID: 5353466
  11. Lyngstad, G.; Skjelbred, P.; Swanson, D.M.; Skoglund, L.A. Analgesic effect of oral ibuprofen 400, 600, and 800 mg; paracetamol 500 and 1000 mg; and paracetamol 1000 mg plus 60 mg codeine in acute postoperative pain: A single-dose, randomized, placebo-controlled, and double-blind study. Eur. J. Clin. Pharmacol., 2021, 77(12), 1843-1852. doi: 10.1007/s00228-021-03231-9 PMID: 34655316
  12. Potthast, H.; Dressman, J.B.; Junginger, H.E.; Midha, K.K.; Oeser, H.; Shah, V.P.; Vogelpoel, H.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: Ibuprofen. J. Pharm. Sci., 2005, 94(10), 2121-2131. doi: 10.1002/jps.20444 PMID: 16136567
  13. Sharma, P.K.; Garg, S.K.; Narang, A. Pharmacokinetics of oral ibuprofen in premature infants. J. Clin. Pharmacol., 2003, 43(9), 968-973. doi: 10.1177/0091270003254635 PMID: 12971028
  14. Zawada, E.T., Jr Renal consequences of nonsteroidal antiinflammatory drugs. Postgrad. Med., 1982, 71(5), 223-230. doi: 10.1080/00325481.1982.11716077 PMID: 7041104
  15. Melton, L.M.; Keith, A.B.; Davis, S.; Oakley, A.E.; Edwardson, J.A.; Morris, C.M. Chronic glial activation, neurodegeneration, and APP immunoreactive deposits following acute administration of double‐stranded RNA. Glia, 2003, 44(1), 1-12. doi: 10.1002/glia.10276 PMID: 12951652
  16. Ton, T.G.; Heckbert, S.R.; Longstreth, W.T., Jr; Rossing, M.A.; Kukull, W.A.; Franklin, G.M.; Swanson, P.D.; Smith-Weller, T.; Checkoway, H. Nonsteroidal anti‐inflammatory drugs and risk of Parkinson’s disease. Mov. Disord., 2006, 21(7), 964-969. doi: 10.1002/mds.20856 PMID: 16550541
  17. Harris, R.E.; Kasbari, S.; Farrar, W.B. Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol. Rep., 1999, 6(1), 71-73. doi: 10.3892/or.6.1.71 PMID: 9864404
  18. Jamali, F.; Brocks, D.R. The pharmacokinetics of ibuprofen in humans and animals. In: Ibuprofen; Rainsford, K., Ed.; Wiley, 2015; pp. 81-131. doi: 10.1002/9781118743614.ch4
  19. Katzung, B.G.; Furst, D.E. Non steroidal anti inflammatory drugs, disease miodifying anti rheumatic drugs, non opioid analgesics, drugs used in gout. In: Basic and clinical pharmacology; McGraw-Hill Education, 1998.
  20. Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Aspects Med., 2012, 33(3), 209-290. doi: 10.1016/j.mam.2011.12.002 PMID: 22230555
  21. Kosa, T.; Maruyama, T.; Otagiri, M. Species differences of serum albumins: I. Drug binding sites. Pharm. Res., 1997, 14(11), 1607-1612. doi: 10.1023/A:1012138604016 PMID: 9434282
  22. Lee, P.; Wu, X. Review: Modifications of human serum albumin and their binding effect. Curr. Pharm. Des., 2015, 21(14), 1862-1865. doi: 10.2174/1381612821666150302115025 PMID: 25732553
  23. Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol., 2005, 353(1), 38-52. doi: 10.1016/j.jmb.2005.07.075 PMID: 16169013
  24. Dondoni, A.; Dall’Occo, T.; Fantin, G.; Medici, A.; Pedrini, P.; Rossetti, V. Studies on the actual and potential impurities in ibuprofen. Farmaco, Prat., 1986, 41(7), 237-244. PMID: 3743735
  25. Castell, J.V.; Gomez-L, M.J.; Miranda, M.A.; Morera, I.M. Photolytic degradation of ibuprofen. toxicity of the isolated photoproducts on fibroblasts and erythrocytes. Photochem. Photobiol., 1987, 46(6), 991-996. doi: 10.1111/j.1751-1097.1987.tb04882.x PMID: 3438349
  26. Archibald, T.; Brown, S. Monitoring commercial ibuprofen potency changes over 1 year when stored in a household setting. J. Pharm. Technol., 2020, 36(1), 16-21. doi: 10.1177/8755122519877808 PMID: 34752511
  27. Asmus, P.A. Determination of 2-(4-isobutylphenyl)propionic acid in bulk drug and compressed tablets by reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 1985, 331(1), 169-176. doi: 10.1016/0021-9673(85)80018-2 PMID: 4044737
  28. TSO. European Pharmacopoeia; Strasbourg, France, 2008.
  29. Gou, N.; Yuan, S.; Lan, J.; Gao, C.; Alshawabkeh, A.N.; Gu, A.Z. A quantitative toxicogenomics assay reveals the evolution and nature of toxicity during the transformation of environmental pollutants. Environ. Sci. Technol., 2014, 48(15), 8855-8863. doi: 10.1021/es501222t PMID: 25010344
  30. Caviglioli, G.; Valeria, P.; Brunella, P.; Sergio, C.; Attilia, A.; Gaetano, B. Identification of degradation products of Ibuprofen arising from oxidative and thermal treatments. J. Pharm. Biomed. Anal., 2002, 30(3), 499-509. doi: 10.1016/S0731-7085(02)00400-4 PMID: 12367674
  31. Ghosh, R.; Darin, K.; Deb, P. Presence of organic impurities into active pharmaceutical ingredients: A review. Int. J. Pharm. Sci. Res., 2014, 5(10), 4078-4108.
  32. Ruggeri, G.; Ghigo, G.; Maurino, V.; Minero, C.; Vione, D. Photochemical transformation of ibuprofen into harmful 4-isobutylacetophenone: Pathways, kinetics, and significance for surface waters. Water Res., 2013, 47(16), 6109-6121. doi: 10.1016/j.watres.2013.07.031 PMID: 23972675
  33. Carter, D.C.; He, X.M. Structure of human serum albumin. Science, 1990, 249(4966), 302-303. doi: 10.1126/science.2374930 PMID: 2374930
  34. Lambrinidis, G.; Vallianatou, T.; Tsantili-Kakoulidou, A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv. Drug Deliv. Rev., 2015, 86, 27-45. doi: 10.1016/j.addr.2015.03.011 PMID: 25819487
  35. Chechłacz, M.; Korytowska, N. Plasma protein-binding compounds in humans. Importance in therapy and methods for determining the free fraction. Prosp. Pharmaceut. Sci., 2017, 15(6), 50-59. doi: 10.56782/pps.76
  36. Peters, T. All about albumin: Biochemistry, genetics, and medical applications; Academic Press: San Diego, 1996.
  37. Zhu, L.; Yang, F.; Chen, L.; Meehan, E.J.; Huang, M. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. J. Struct. Biol., 2008, 162(1), 40-49. doi: 10.1016/j.jsb.2007.12.004 PMID: 18258455
  38. Maciążek-Jurczyk, M.; Szkudlarek-Haśnik, A.; Siek, D.; Chłosta, M.; Faruga, K.; Moskała, W.; Sułkowska, A. Binding of ketoprofen to plasma protein in inflammatory states. Ann. Acad. Med. Siles., 2012, 66(3), 27-33.
  39. Yamasaki, K.; Hyodo, S.; Taguchi, K.; Nishi, K.; Yamaotsu, N.; Hirono, S.; Chuang, V.T.G.; Seo, H.; Maruyama, T.; Otagiri, M. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. PLoS One, 2017, 12(6), e0180404. doi: 10.1371/journal.pone.0180404 PMID: 28662200
  40. Polish Pharmacopoeia. 2017. Available from:https://www.urpl.gov.pl/en/polish-pharmacopoeia
  41. European Medicines Agency Science Medicines Health. ICH M9 guideline on biopharmaceutics classification system - based biowaivers, Step 5. 2020. Available from:https://www.ema.europa.eu/en/ich-m9-biopharmaceutics-classification-system-based-biowaivers-scientific-guideline
  42. Czub, M.P.; Handing, K.B.; Venkataramany, B.S.; Cooper, D.R.; Shabalin, I.G.; Minor, W. Albumin-based transport of nonsteroidal anti-inflammatory drugs in mammalian blood plasma. J. Med. Chem., 2020, 63(13), 6847-6862. doi: 10.1021/acs.jmedchem.0c00225 PMID: 32469516
  43. Bou-Abdallah, F.; Sprague, S.E.; Smith, B.M.; Giffune, T.R. Binding thermodynamics of diclofenac and naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study. J. Chem. Thermodyn., 2016, 103, 299-309. doi: 10.1016/j.jct.2016.08.020
  44. Ploch-Jankowska, A.; Pentak, D.; Nycz, J.E. A comprehensive spectroscopic analysis of the ibuprofen binding with human serum albumin, part II. Sci. Pharm., 2021, 89(3), 30. doi: 10.3390/scipharm89030030
  45. Ploch-Jankowska, A.; Pentak, D. A Comprehensive spectroscopic analysis of the ibuprofen binding with human serum albumin, part I. Pharmaceuticals, 2020, 13(9), 205. doi: 10.3390/ph13090205 PMID: 32825638
  46. Miyamoto, H.; Matsueda, S.; Moritsuka, A.; Shimokawa, K.; Hirata, H.; Nakashima, M.; Sasaki, H.; Fumoto, S.; Nishida, K. Evaluation of hypothermia on the in vitro metabolism and binding and in vivo disposition of midazolam in rats. Biopharm. Drug Dispos., 2015, 36(7), 481-489. doi: 10.1002/bdd.1960 PMID: 26037413
  47. Carter, D.C.; He, X.M.; Munson, S.H.; Twigg, P.D.; Gernert, K.M.; Broom, M.B.; Miller, T.Y. Three-dimensional structure of human serum albumin. Science, 1989, 244(4909), 1195-1198. doi: 10.1126/science.2727704 PMID: 2727704
  48. Salahuddin, P. Urea and acid induced unfolding of fatted and defatted human serum albumin. Protein Pept. Lett., 2008, 15(8), 826-833. doi: 10.2174/092986608785203764 PMID: 18855756
  49. Cistola, D.P.; Small, D.M.; Hamilton, J.A. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. II. Electrostatic interactions in individual fatty acid binding sites. J. Biol. Chem., 1987, 262(23), 10980-10985. doi: 10.1016/S0021-9258(18)60914-7 PMID: 3611100
  50. Curry, S.; Mandelkow, H.; Brick, P.; Franks, N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol., 1998, 5(9), 827-835. doi: 10.1038/1869 PMID: 9731778
  51. Zhao, P.; Zhu, G.; Zhang, W.; Zhang, L.; Liang, Z.; Zhang, Y. Study of multiple binding constants of dexamethasone with human serum albumin by capillary electrophoresis-frontal analysis and multivariate regression. Anal. Bioanal. Chem., 2009, 393(1), 257-261. doi: 10.1007/s00216-008-2373-5 PMID: 18807018
  52. Hiratsuka, T. Conformational changes in the 23-kilodalton NH2-terminal peptide segment of myosin ATPase associated with ATP hydrolysis. J. Biol. Chem., 1990, 265(31), 18786-18790. doi: 10.1016/S0021-9258(17)30581-1 PMID: 2146263
  53. Huang, B.X.; Dass, C.; Kim, H.Y. Probing conformational changes of human serum albumin due to unsaturated fatty acid binding by chemical cross-linking and mass spectrometry. Biochem. J., 2005, 387(3), 695-702. doi: 10.1042/BJ20041624 PMID: 15588254
  54. Hill, A.V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol., 1910, 40, 4-7.
  55. Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Varga, B.; Juhasz, B.; Tosaki, A. The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact Sci., 2012, 66(4), 427-438. doi: 10.1007/s00407-012-0098-5
  56. Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc., 2015, 10(3), 382-396. doi: 10.1038/nprot.2015.024 PMID: 25654756
  57. Wüthrich, K. NMR - this other method for protein and nucleic acid structure determination. Acta Crystallogr. D Biol. Crystallogr., 1995, 51(3), 249-270. doi: 10.1107/S0907444994010188 PMID: 15299291
  58. Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spektroskopowe metody identyfikacji związków organicznych; Wydawnictwo Naukowe PWN: Warszawa, 2012.
  59. Pentak, D.; Maciążek-Jurczyk, M.; Zawada, Z.H. The role of nanoparticles in the albumin-cytarabine and albumin-methotrexate interactions. Mater. Sci. Eng. C, 2017, 73, 388-397. doi: 10.1016/j.msec.2016.12.055 PMID: 28183623
  60. Gamov, G.A.; Zavalishin, M.N.; Sharnin, V.A. Comment on the frequently used method of the metal complex-DNA binding constant determination from UV-Vis data. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 160-164. doi: 10.1016/j.saa.2018.08.009 PMID: 30099313
  61. Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules, 2019, 9(8), 359. doi: 10.3390/biom9080359 PMID: 31409012
  62. Lu, R.; Li, W.W.; Katzir, A.; Raichlin, Y.; Yu, H.Q.; Mizaikoff, B. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst, 2015, 140(3), 765-770. doi: 10.1039/C4AN01495B PMID: 25525641
  63. Baronio, C.M.; Baldassarre, M.; Barth, A. Insight into the internal structure of amyloid-β oligomers by isotope-edited Fourier transform infrared spectroscopy. Phys. Chem. Chem. Phys., 2019, 21(16), 8587-8597. doi: 10.1039/C9CP00717B PMID: 30964131
  64. Wei, W.; Hu, W.; Zhang, X.Y.; Zhang, F.P.; Sun, S.Q.; Liu, Y.; Xu, C.H. Analysis of protein structure changes and quality regulation of surimi during gelation based on infrared spectroscopy and microscopic imaging. Sci. Rep., 2018, 8(1), 5566. doi: 10.1038/s41598-018-23645-3 PMID: 29615642
  65. Carton, I.; Böcker, U.; Ofstad, R.; Sørheim, O.; Kohler, A. Monitoring secondary structural changes in salted and smoked salmon muscle myofiber proteins by FT-IR microspectroscopy. J. Agric. Food Chem., 2009, 57(9), 3563-3570. doi: 10.1021/jf803668e PMID: 19292444
  66. Tatulian, S.A. FTIR analysis of proteins and protein-membrane interactions. Methods Mol. Biol., 2019, 2003, 281-325. doi: 10.1007/978-1-4939-9512-7_13 PMID: 31218623
  67. Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem., 1986, 38, 181-364. doi: 10.1016/S0065-3233(08)60528-8 PMID: 3541539
  68. Lin, K.; Yang, H.; Gao, Z.; Li, F.; Yu, S. Overestimated accuracy of circular dichroism in determining protein secondary structure. Eur. Biophys. J., 2013, 42(6), 455-461. doi: 10.1007/s00249-013-0896-y PMID: 23467783
  69. Kelly, S.; Price, N. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci., 2000, 1(4), 349-384. doi: 10.2174/1389203003381315 PMID: 12369905
  70. Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg., 2007, 1767(9), 1073-1101. doi: 10.1016/j.bbabio.2007.06.004 PMID: 17692815
  71. Zeeshan, F.; Tabbassum, M.; Jorgensen, L.; Medlicott, N.J. Attenuated total reflection fourier transform infrared (ATR FTIR) spectroscopy as an analytical method to investigate the secondary structure of a model protein embedded in solid lipid matrices. Appl. Spectrosc., 2018, 72(2), 268-279. doi: 10.1177/0003702817739908 PMID: 29022355
  72. Balaei, F.; Ghobadi, S. Hydrochlorothiazide binding to human serum albumin induces some compactness in the molecular structure of the protein: A multi-spectroscopic and computational study. J. Pharm. Biomed. Anal., 2019, 162, 1-8. doi: 10.1016/j.jpba.2018.09.009 PMID: 30218717
  73. Bandekar, J. Amide modes and protein conformation. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1992, 1120(2), 123-143. doi: 10.1016/0167-4838(92)90261-B PMID: 1373323
  74. Belatik, A.; Hotchandani, S.; Carpentier, R.; Tajmir-Riahi, H.A. Locating the binding sites of Pb(II) ion with human and bovine serum albumins. PLoS One, 2012, 7(5), e36723. doi: 10.1371/journal.pone.0036723 PMID: 22574219
  75. Ahmed-Ouameur, A.; Diamantoglou, S.; Sedaghat-Herati, M.R.; Nafisi, S.; Carpentier, R.; Tajmir-Riahi, H.A. The effects of drug complexation on the stability and conformation of human serum albumin: Protein unfolding. Cell Biochem. Biophys., 2006, 45(2), 203-214. doi: 10.1385/CBB:45:2:203 PMID: 16757821
  76. Ahmed, A.; Tajmir-Riahi, H.A.; Carpentier, R. A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett., 1995, 363(1-2), 65-68. doi: 10.1016/0014-5793(95)00282-E PMID: 7729557
  77. Beauchemin, R.; N’soukpoé-Kossi, C.N.; Thomas, T.J.; Thomas, T.; Carpentier, R.; Tajmir-Riahi, H.A. Polyamine analogues bind human serum albumin. Biomacromolecules, 2007, 8(10), 3177-3183. doi: 10.1021/bm700697a PMID: 17887793
  78. Guzzi, R.; Bartucci, R. Interactive multiple binding of oleic acid, warfarin and ibuprofen with human serum albumin revealed by thermal and fluorescence studies. Eur. Biophys. J., 2022, 51(1), 41-49. doi: 10.1007/s00249-021-01582-w PMID: 35048131
  79. Varshney, A.; Ahmad, B.; Khan, R.H. Comparative studies of unfolding and binding of ligands to human serum albumin in the presence of fatty acid: Spectroscopic approach. Int. J. Biol. Macromol., 2008, 42(5), 483-490. doi: 10.1016/j.ijbiomac.2008.03.004 PMID: 18452986
  80. Liu, T.; Liu, M.; Guo, Q.; Liu, Y.; Zhao, Y.; Wu, Y.; Sun, B.; Wang, Q.; Liu, J.; Han, J. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation. J. Mol. Liq., 2020, 311, 113364. doi: 10.1016/j.molliq.2020.113364
  81. bratty, M.A. Spectroscopic and molecular docking studies for characterizing binding mechanism and conformational changes of human serum albumin upon interaction with Telmisartan. Saudi Pharm. J., 2020, 28(6), 729-736. doi: 10.1016/j.jsps.2020.04.015 PMID: 32550805
  82. Hou, H.; Qu, X.; Li, Y.; Kong, Y.; Jia, B.; Yao, X.; Jiang, B. Binding of citreoviridin to human serum albumin: Multispectroscopic and molecular docking. BioMed Res. Int., 2015, 2015, 1-8. doi: 10.1155/2015/162391 PMID: 25977915
  83. Wang, W.; Nema, S.; Teagarden, D. Protein aggregation-Pathways and influencing factors. Int. J. Pharm., 2010, 390(2), 89-99. doi: 10.1016/j.ijpharm.2010.02.025 PMID: 20188160
  84. Oleszko, A.; Hartwich, J.; Gąsior-Głogowska, M.; Olsztyńska-Janus, S. Changes of albumin secondary structure after palmitic acid binding. FT-IR spectroscopic study. Acta Bioeng. Biomech., 2018, 20(1), 59-64. PMID: 29658532

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024