Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT


Citar

Texto integral

Resumo

A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continu

Sobre autores

Sarah Otun

Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand

Autor responsável pela correspondência
Email: info@benthamscience.net

Richard Graca

Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand

Email: info@benthamscience.net

Ikechukwu Achilonu

Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand

Email: info@benthamscience.net

Bibliografia

  1. Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 2021, 10(10), 1310. doi: 10.3390/pathogens10101310 PMID: 34684258
  2. Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol., 2023, 21(5), 280-295. doi: 10.1038/s41579-022-00820-y PMID: 36411397
  3. Bujotzek, Alexander; Tiefenthaler, Georg; Lariviere, Laurent; D’Andrea, Laura; Marquez, Elsa A.; Rudloff, Ina; Cho, Steven X. Protein engineering of a stable and potent anti-inflammatory IL-37-Fc fusion with enhanced therapeutic potential. Cell Chemical Biology , 2022, , 586-596. doi: 10.1016/j.chembiol.2021.10.004
  4. Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health, 2022, 244, 114006. doi: 10.1016/j.ijheh.2022.114006 PMID: 35841823
  5. Arcari, G.; Carattoli, A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog. Glob. Health, 2023, 117(4), 328-341. doi: 10.1080/20477724.2022.2121362 PMID: 36089853
  6. Kumar, S.; Anwer, R.; Azzi, A. Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae. AIMS Microbiol., 2023, 9(1), 112-130. doi: 10.3934/microbiol.2023008 PMID: 36891535
  7. Maione, A.; La Pietra, A.; de Alteriis, E.; Mileo, A.; De Falco, M.; Guida, M.; Galdiero, E. Effect of myrtenol and its synergistic interactions with antimicrobial drugs in the inhibition of single and mixed biofilms of candida auris and klebsiella pneumoniae. Microorganisms, 2022, 10(9), 1773. doi: 10.3390/microorganisms10091773 PMID: 36144375
  8. Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol., 2020, 18(6), 344-359. doi: 10.1038/s41579-019-0315-1 PMID: 32055025
  9. Banerjee, T.; Sharma, S.; Rakshit, P. Role of antibiotics in hospital-acquired infections and community-acquired infections. In: Antibiotics - Therapeutic Spectrum and Limitations; Elsevier, 2023; pp. 549-574. doi: 10.1016/B978-0-323-95388-7.00016-4
  10. Dhingra, S.; Rahman, N.A.A.; Peile, E.; Rahman, M.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health, 2020, 8, 535668. doi: 10.3389/fpubh.2020.535668 PMID: 33251170
  11. Gonzalez-Ferrer, S.; Peñaloza, H.F.; Budnick, J.A.; Bain, W.G.; Nordstrom, H.R.; Lee, J.S.; Van Tyne, D. Finding order in the chaos: Outstanding questions in Klebsiella pneumoniae pathogenesis. Infect. Immun., 2021, 89(4), e00693-20. doi: 10.1128/IAI.00693-20 PMID: 33558323
  12. Abbas, Ali Taher; Salih, Hind Abdallah Review of Beta lactams. Ann. Rom. Soc. Cell Biol., 2022, 26, 1863-1881.
  13. Albarri, O.; AlMatar, M.; Öcal, M.M.; Köksal, F. Overexpression of efflux pumps acrab and oqxab contributes to ciprofloxacin resistance in clinical isolates of k. pneumoniae. Curr. Protein Pept. Sci., 2022, 23(5), 356-368. doi: 10.2174/1389203723666220630162920 PMID: 35786184
  14. AlMatar, M.; Albarri, O.; Var, I.; Köksal, F. Antimicrobial resistance of clinical klebsiella pneumoniae isolates: Involvement of AcrAB and OqxAB Efflux Pumps. Curr. Mol. Pharmacol., 2023, 17(1), e310323215266. doi: 10.2174/1874467217666230331081434 PMID: 36999690
  15. Azeredo, J.; García, P.; Drulis-Kawa, Z. Targeting biofilms using phages and their enzymes. Curr. Opin. Biotechnol., 2021, 68, 251-261. doi: 10.1016/j.copbio.2021.02.002 PMID: 33714050
  16. Priyanka, A.; Akshatha, K.; Deekshit, V.K. Klebsiella pneumoniae infections and antimicrobial drug resistance. In: In Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery; Singapore: Springer Singapore, 2020; pp. 195-225. doi: 10.1007/978-981-15-1695-5_12
  17. Wang, N.; Luo, J.; Deng, F.; Huang, Y.; Zhou, H. Antibiotic combination therapy: A strategy to overcome bacterial resistance to aminoglycoside antibiotics. Front. Pharmacol., 2022, 13, 839808. doi: 10.3389/fphar.2022.839808 PMID: 35281905
  18. Dagur, P.; Ghosh, M.; Patra, A. Aminoglycoside antibiotics. In: Medicinal Chemistry of Chemotherapeutic Agents; Elsevier, 2023; pp. 135-155. doi: 10.1016/B978-0-323-90575-6.00009-0
  19. Zhang, Yuan; Zhang, Ning; Wang, Mengyu; Luo, Ming; Peng, Yao; Li, Zhenpeng; Xu, Jialiang; Ou, Meiling; Kan, Biao; Li, Xu The prevalence and distribution of aminoglycoside resistance genes. In: Biosafety and Health ; Chinese Medical Journals Publishing House: Dongsi Xidajie, 2023; pp. 14-20.
  20. Llano-Sotelo, Beatriz Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. In: Chemistry & biology; Elsevier, 2002; pp. 455-463.
  21. Stern, A.L.; Van der Verren, S.E.; Kanchugal P, S.; Näsvall, J.; Gutiérrez-de-Terán, H.; Selmer, M. Structural mechanism of AadA, a dual-specificity aminoglycoside adenylyltransferase from Salmonella enterica. J. Biol. Chem., 2018, 293(29), 11481-11490. doi: 10.1074/jbc.RA118.003989 PMID: 29871922
  22. Wright, Gerard D Aminoglycoside phosphotransferases: Proteins, structure, and mechanism. In: Front Biosci; Citeseer, 1999; pp. 9-21.
  23. Sunada, A.; Nakajima, M.; Ikeda, Y.; Kondo, S.; Hotta, K. Enzymatic 1-N-acetylation of paromomycin by an actinomycete strain #8 with multiple aminoglycoside resistance and paromomycin sensitivity. J. Antibiot., 1999, 52(9), 809-814. doi: 10.7164/antibiotics.52.809 PMID: 10726929
  24. Hotta, K.; Sunada, A.; Ishikawa, J.; Mizuno, S.; Ikeda, Y.; Kondo, S. The novel enzymatic 3′'-N-acetylation of arbekacin by an aminoglycoside 3-N-acetyltransferase of Streptomyces origin and the resulting activity. J. Antibiot., 1998, 51(8), 735-742. doi: 10.7164/antibiotics.51.735 PMID: 9766465
  25. Raslan, M.A.; Raslan, S.A.; Shehata, E.M.; Mahmoud, A.S.; Lundstrom, K.; Barh, D.; Azevedo, V.; Sabri, N.A. Associations between nutrigenomic effects and incidences of microbial resistance against novel antibiotics. Pharmaceuticals, 2023, 16(8), 1093. doi: 10.3390/ph16081093 PMID: 37631008
  26. Frase, H.; Toth, M.; Vakulenko, S.B. Revisiting the nucleotide and aminoglycoside substrate specificity of the bifunctional aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2′')-Ia enzyme. J. Biol. Chem., 2012, 287(52), 43262-43269. doi: 10.1074/jbc.M112.416453 PMID: 23115238
  27. Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat., 2010, 13(6), 151-171. doi: 10.1016/j.drup.2010.08.003 PMID: 20833577
  28. Labby, K.J.; Garneau-Tsodikova, S. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med. Chem., 2013, 5(11), 1285-1309. doi: 10.4155/fmc.13.80 PMID: 23859208
  29. Boehr, D.D.; Draker, K.; Koteva, K.; Bains, M.; Hancock, R.E.; Wright, G.D. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol., 2003, 10(2), 189-196. doi: 10.1016/S1074-5521(03)00026-7 PMID: 12618191
  30. Baquero, F.; Martínez, J.L.; F Lanza, V.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev., 2021, 34(4), e0005019. doi: 10.1128/CMR.00050-19 PMID: 34190572
  31. Serio, A.W.; Keepers, T.; Andrews, L.; Krause, K.M. Aminoglycoside revival: Review of a historically important class of antimicrobials undergoing rejuvenation. Ecosal Plus, 2018, 8(1), ecosalplus.ESP-0002-2018. doi: 10.1128/ecosalplus.ESP-0002-2018 PMID: 30447062
  32. Bennett, C.C. The aminoglycosides. Prim. Care Update Ob Gyns, 1996, 3(6), 186-191. doi: 10.1016/S1068-607X(96)00025-X
  33. Thacharodi, A.; Lamont, I.L. Aminoglycoside-modifying enzymes are sufficient to make pseudomonas aeruginosa clinically resistant to key antibiotics. Antibiotics, 2022, 11(7), 884. doi: 10.3390/antibiotics11070884 PMID: 35884138
  34. Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol., 2020, 88(1), 26-40. doi: 10.1007/s00239-019-09914-3 PMID: 31659373
  35. Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial resistance to antimicrobial agents. Antibiotics, 2021, 10(5), 593. doi: 10.3390/antibiotics10050593 PMID: 34067579
  36. Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. In: Virulence Mechanisms of Bacterial Pathogens; ASM Press: Washington, DC, USA, 2016; pp. 481-511. doi: 10.1128/9781555819286.ch17
  37. Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(6), a027029. doi: 10.1101/cshperspect.a027029 PMID: 27252397
  38. Martinez, J.L.; Fajardo, A.; Garmendia, L.; Hernandez, A.; Linares, J.F.; Martínez-Solano, L.; Sánchez, M.B. A global view of antibiotic resistance. FEMS Microbiol. Rev., 2009, 33(1), 44-65. doi: 10.1111/j.1574-6976.2008.00142.x PMID: 19054120
  39. Winter, M.; Buckling, A.; Harms, K.; Johnsen, P.J.; Vos, M. Antimicrobial resistance acquisition via natural transformation: Context is everything. Curr. Opin. Microbiol., 2021, 64, 133-138. doi: 10.1016/j.mib.2021.09.009 PMID: 34710742
  40. Lund, D.; Coertze, R.D.; Parras-Moltó, M.; Berglund, F.; Flach, C.F.; Johnning, A.; Larsson, D.G.J.; Kristiansson, E. Extensive screening reveals previously undiscovered aminoglycoside resistance genes in human pathogens. Commun. Biol., 2023, 6(1), 812. doi: 10.1038/s42003-023-05174-6 PMID: 37537271
  41. El-Far, A.; Samir, S.; El-Gebaly, E.; Omar, M.; Dahroug, H.; El-Shenawy, A.; Soliman, N.S.; Gamal, D. High rates of aminoglycoside methyltransferases associated with metallo-beta-lactamases in multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa clinical isolates from a tertiary care hospital in egypt. Infect. Drug Resist., 2021, 14, 4849-4858. doi: 10.2147/IDR.S335582 PMID: 34848977
  42. Bassenden, A. Towards structure-guided design of next-generation aminoglycoside antibiotics; McGill University, 2021.
  43. Zeiders, S.M.; Chmielewski, J. Antibiotic–cell‐penetrating peptide conjugates targeting challenging drug‐resistant and intracellular pathogenic bacteria. Chem. Biol. Drug Des., 2021, 98(5), 762-778. doi: 10.1111/cbdd.13930 PMID: 34315189
  44. Sadovskaya, I.; Vinogradov, E.; Li, J.; Hachani, A.; Kowalska, K.; Filloux, A. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: The ndvB gene is involved in the production of highly glycerol-phosphorylated -(1->3)-glucans, which bind aminoglycosides. Glycobiology, 2010, 20(7), 895-904. doi: 10.1093/glycob/cwq047 PMID: 20348539
  45. Hanberger, H.; Edlund, C.; Furebring, M.; G Giske, C.; Melhus, A.; Nilsson, L.E.; Petersson, J.; Sjölin, J.; Ternhag, A.; Werner, M.; Eliasson, E. Rational use of aminoglycosides--review and recommendations by the swedish reference group for antibiotics (SRGA). Scand. J. Infect. Dis., 2013, 45(3), 161-175. doi: 10.3109/00365548.2012.747694 PMID: 23270477
  46. Pagkalis, S.; Mantadakis, E.; Mavros, M.N.; Ammari, C.; Falagas, M.E. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs, 2011, 71(17), 2277-2294. doi: 10.2165/11597020-000000000-00000 PMID: 22085385
  47. Yılmaz, Ç.; Özcengiz, G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol., 2017, 133, 43-62. doi: 10.1016/j.bcp.2016.10.005 PMID: 27765485
  48. De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in eskape pathogens. Clin. Microbiol. Rev., 2020, 33(3), e00181-19. doi: 10.1128/CMR.00181-19 PMID: 32404435
  49. Zhang, J.; Liu, G.; Zhang, X.; Chang, Y.; Wang, S.; He, W.; Sun, W.; Chen, D.; Murchie, A.I.H. Aminoglycoside riboswitch control of the expression of integron associated aminoglycoside resistance adenyltransferases. Virulence, 2020, 11(1), 1432-1442. doi: 10.1080/21505594.2020.1836910 PMID: 33103573
  50. Chen, Y.; Näsvall, J.; Wu, S.; Andersson, D.I.; Selmer, M. Structure of AadA from Salmonella enterica : A monomeric aminoglycoside (3′′)(9) adenyltransferase. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(11), 2267-2277. doi: 10.1107/S1399004715016429 PMID: 26527143
  51. Roi, A.; Rusu, L.C.; Roi, C.I.; Luca, R.E.; Boia, S.; Munteanu, R.I. A new approach for the diagnosis of systemic and oral diseases based on salivary biomolecules. Dis. Markers, 2019, 2019, 1-11. doi: 10.1155/2019/8761860 PMID: 30906485
  52. Qing, R.; Hao, S.; Smorodina, E.; Jin, D.; Zalevsky, A.; Zhang, S. Protein design: From the aspect of water solubility and stability. Chem. Rev., 2022, 122(18), 14085-14179. doi: 10.1021/acs.chemrev.1c00757 PMID: 35921495
  53. Tripathi, T.; Dubey, V.K. Advances in protein molecular and structural biology methods; Academic Press, 2022.
  54. Pierrat, O.A.; Liu, M.; Collie, G.W.; Shetty, K.; Rodrigues, M.J.; Le Bihan, Y.V.; Gunnell, E.A.; McAndrew, P.C.; Stubbs, M.; Rowlands, M.G.; Yahya, N.; Shehu, E.; Talbot, R.; Pickard, L.; Bellenie, B.R.; Cheung, K.M.J.; Drouin, L.; Innocenti, P.; Woodward, H.; Davis, O.A.; Lloyd, M.G.; Varela, A.; Huckvale, R.; Broccatelli, F.; Carter, M.; Galiwango, D.; Hayes, A.; Raynaud, F.I.; Bryant, C.; Whittaker, S.; Rossanese, O.W.; Hoelder, S.; Burke, R.; van Montfort, R.L.M. Discovering cell-active BCL6 inhibitors: effectively combining biochemical HTS with multiple biophysical techniques, X-ray crystallography and cell-based assays. Sci. Rep., 2022, 12(1), 18633. doi: 10.1038/s41598-022-23264-z PMID: 36329085
  55. Honisch, C.; Donadello, V.; Hussain, R.; Peterle, D.; De Filippis, V.; Arrigoni, G.; Gatto, C.; Giurgola, L.; Siligardi, G.; Ruzza, P. Application of circular dichroism and fluorescence spectroscopies to assess photostability of water-soluble porcine lens proteins. ACS Omega, 2020, 5(8), 4293-4301. doi: 10.1021/acsomega.9b04234 PMID: 32149259
  56. Böhm, G.; Muhr, R.; Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. Des. Sel., 1992, 5(3), 191-195. doi: 10.1093/protein/5.3.191 PMID: 1409538
  57. Pelton, J.T.; McLean, L.R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem., 2000, 277(2), 167-176. doi: 10.1006/abio.1999.4320 PMID: 10625503
  58. Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res., 2008, 25(7), 1487-1499. doi: 10.1007/s11095-007-9516-9 PMID: 18172579
  59. Wang, H.; Nakata, E.; Hamachi, I. Recent progress in strategies for the creation of protein-based fluorescent biosensors. ChemBioChem, 2009, 10(16), 2560-2577. doi: 10.1002/cbic.200900249 PMID: 19693761
  60. Hashemi-Shahraki, F.; Shareghi, B.; Farhadian, S. Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. J. Mol. Liq., 2021, 341, 117317. doi: 10.1016/j.molliq.2021.117317
  61. Shakya, T.; Stogios, P.J.; Waglechner, N.; Evdokimova, E.; Ejim, L.; Blanchard, J.E.; McArthur, A.G.; Savchenko, A.; Wright, G.D. A small molecule discrimination map of the antibiotic resistance kinome. Chem. Biol., 2011, 18(12), 1591-1601. doi: 10.1016/j.chembiol.2011.10.018 PMID: 22195561
  62. Wybenga-Groot, Leanne E; Kari-ann, Draker Gerard D Wright, and Albert M Berghuis Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold In: Structure; Elsevier, 1999; pp. 497-507.
  63. Vetting, M.W.; Hegde, S.S.; Javid-Majd, F.; Blanchard, J.S.; Roderick, S.L. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat. Struct. Biol., 2002, 9(9), 653-658. doi: 10.1038/nsb830 PMID: 12161746
  64. Wolf, E.; Vassilev, A.; Makino, Y.; Sali, A.; Nakatani, Y.; Burley, S.K. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell, 1998, 94(4), 439-449. doi: 10.1016/S0092-8674(00)81585-8 PMID: 9727487
  65. Benveniste, Raoul; Davies, Julian R‐factor mediated gentamicin resistance: A new enzyme which modifies aminoglycoside antibiotics. In: FEBS letters; Wiley Online Library, 1971; pp. 293-296. doi: 10.1016/0014-5793(71)80282-X
  66. Pendleton, Jack N Sean P Gorman, and Brendan F Gilmore Clinical relevance of the ESKAPE pathogens. In: Expert review of anti-infective therapy; Taylor & Francis, 2013; pp. 297-308.
  67. Jiang, M.; Kuang, S.; Lai, S.; Zhang, S.; Yang, J.; Peng, B.; Peng, X.; Chen, Z.; Li, H. Na + -NQR confers aminoglycoside resistance via the regulation of L- Alanine Metabolism. MBio, 2020, 11(6), e02086-20. doi: 10.1128/mBio.02086-20 PMID: 33203750
  68. Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother., 1999, 43(4), 727-737. doi: 10.1128/AAC.43.4.727 PMID: 10103173
  69. Ramazanzadeh, R.; Rouhi, S.; Shakib, P.; Shahbazi, B.; Bidarpour, F.; Karimi, M. Molecular characterization of vibrio cholerae isolated from clinical samples in kurdistan province, iran. Jundishapur J. Microbiol., 2015, 8(5), e18119. doi: 10.5812/jjm.8(4)2015.18102 PMID: 26060565
  70. Huth, M.E.; Ricci, A.J.; Cheng, A.G. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int. J. Otolaryngol., 2011, 2011, 1-19. doi: 10.1155/2011/937861 PMID: 22121370
  71. Lv, B.; Bian, M.; Huang, X.; Sun, F.; Gao, Y.; Wang, Y.; Fu, Y.; Yang, B.; Fu, X. n -butanol potentiates subinhibitory aminoglycosides against bacterial persisters and multidrug-resistant mrsa by rapidly enhancing antibiotic uptake. ACS Infect. Dis., 2022, 8(2), 373-386. doi: 10.1021/acsinfecdis.1c00559 PMID: 35100802
  72. Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Antimicrobial Resistance in ESKAPE Pathogens. Mol. Cell. Endocrinol., 1997, 246.
  73. Hishinuma, A.; Yoshida, A.; Suzuki, H.; Okuzumi, K.; Ishida, T. Complete sequencing of an IncFII NDM-1 plasmid in Klebsiella pneumoniae shows structural features shared with other multidrug resistance plasmids. J. Antimicrob. Chemother., 2013, 68(10), 2415-2417. doi: 10.1093/jac/dkt190 PMID: 23681270
  74. Bennett, P.M. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol., 2008, 153(S1)(Suppl. 1), S347-S357. doi: 10.1038/sj.bjp.0707607 PMID: 18193080
  75. Jiang, Z.; Wei, J.; Liang, Y.; Peng, N.; Li, Y. Aminoglycoside antibiotics inhibit mycobacteriophage infection. Antibiotics, 2020, 9(10), 714. doi: 10.3390/antibiotics9100714 PMID: 33086520
  76. Glinka, M.; Wojnowski, W.; Wasik, A. Determination of aminoglycoside antibiotics: Current status and future trends. Trends Analyt. Chem., 2020, 131, 116034. doi: 10.1016/j.trac.2020.116034
  77. Hitchcock, N.M.; Devequi, G.N.D.; Shiach, J.; Valeria, S.H.K.; Dantas, V.B.J.; Alencar, P.R.L.; Coler, B.S.; Botelho, P.S.M.; Badaró, R. Current clinical landscape and global potential of bacteriophage therapy. Viruses, 2023, 15(4), 1020. doi: 10.3390/v15041020 PMID: 37113000
  78. González-Bello, C.; Rodríguez, D.; Pernas, M.; Rodríguez, Á.; Colchón, E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem., 2020, 63(5), 1859-1881. doi: 10.1021/acs.jmedchem.9b01279 PMID: 31663735
  79. Bush, K. Synergistic antibiotic combinations. Antibacterials, 2017, 69-88. doi: 10.1007/7355_2017_23
  80. Schmitz, F.J.; Fluit, A.C.; Gondolf, M.; Beyrau, R.; Lindenlauf, E.; Verhoef, J.; Heinz, H.P.; Jones, M.E. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J. Antimicrob. Chemother., 1999, 43(2), 253-259. doi: 10.1093/jac/43.2.253 PMID: 11252331
  81. Coia, J.E.; Duckworth, G.J.; Edwards, D.I.; Farrington, M.; Fry, C.; Humphreys, H.; Mallaghan, C.; Tucker, D.R. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J. Hosp. Infect., 2006, 63(Suppl. 1), S1-S44. doi: 10.1016/j.jhin.2006.01.001 PMID: 16581155
  82. Cox, G.; Ejim, L.; Stogios, P.J.; Koteva, K.; Bordeleau, E.; Evdokimova, E.; Sieron, A.O.; Savchenko, A.; Serio, A.W.; Krause, K.M.; Wright, G.D. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infect. Dis., 2018, 4(6), 980-987. doi: 10.1021/acsinfecdis.8b00001 PMID: 29634241
  83. Sonousi, A.S.M. Synthesis of netilmicin and apramycin derivatives for the treatment of multidrug-resistant. Infect. Dis., 2017.
  84. Iyer, A.; Madder, A.; Singh, I. Teixobactins: A new class of 21st century antibiotics to combat multidrug-resistant bacterial pathogens. Future Microbiology; Future Medicine, 2019.
  85. Lebeis, S.L.; Kalman, D. Aligning antimicrobial drug discovery with complex and redundant host-pathogen interactions. Cell Host Microbe, 2009, 5(2), 114-122. doi: 10.1016/j.chom.2009.01.008 PMID: 19218083
  86. Mohloding, M. Expression, purification, and structure-function studies of recombinant Klebsiella pneumoniae aminoglycoside (3") (9) adenylyl transferase; University of the Witwatersrand, 2022.
  87. National Academies of Sciences and Medicine. Engineering In: Global health and the future role of the United States; National Academies Press, 2017.
  88. Carnahan, J. Unexpected: Finding Resilience through Functional Medicine, Science, and Faith; Simon and Schuster, 2023.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024