Molecular Characterization, Expression and In Situ Hybridization Analysis of a Pedal Peptide/Orcokinin-type Neuropeptide in Cuttlefish Sepiella japonica

  • Авторлар: Li G.1, Qiu J.2, Cao H.3, Zheng L.3, Chi C.2, Li S.4, Zhou X.1
  • Мекемелер:
    1. National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University,
    2. National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University
    3. National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University
    4. National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean Development Institute
  • Шығарылым: Том 25, № 4 (2024)
  • Беттер: 326-338
  • Бөлім: Life Sciences
  • URL: https://rjsvd.com/1389-2037/article/view/645610
  • DOI: https://doi.org/10.2174/0113892037255378231101065721
  • ID: 645610

Дәйексөз келтіру

Толық мәтін

Аннотация

Background::Neuropeptide pedal peptide (PP) and orcokinin (OK), which are structurally related active peptides, have been widely discovered in invertebrates and constitute the PP/OK neuropeptide family. They have complex structures and play myriad roles in physiological processes. To date, there have been no related reports of PP/OK-type neuropeptide in cephalopods, which possess a highly differentiated multi-lobular brain.

Methods::Rapid Amplification of cDNA Ends (RACE) was employed to obtain the open reading frame (ORF) of PP/OK-type neuropeptide in Sepiella japonica (termed as Sj-PP/OK). Various software were used for sequence analysis. Semi-quantitative PCR was applied to analyze the tissue distribution profile, quantitative real-time PCR (qRT-PCR) was used to study spatio-temporal expression throughout the entire growth and development period, and in situ hybridization (ISH) was employed to observe the tissue location of Sj-PP/OK.

Results::in the present study, we identified the ORF of Sj-PP/OK. The putative precursor of Sj-PP/ OK encodes 22 mature peptides, of which only tridecapeptides could undergo post-translationally amidated at C-terminus. Each of these tridecapeptides possesses the most conserved and frequent N-terminus Asp-Ser-Ile (DSI). Sequence analysis revealed that Sj-PP/OK shared comparatively low identity with other invertebrates PP or OK. The tissue distribution profile showed differences in the expression level of Sj-PP/OK between male and female. qRT-PCR data demonstrated that Sj-PP/OK was widely distributed in various tissues, with its expression level increasing continuously in the brain, optic lobe, liver, and nidamental gland throughout the entire growth and development stages until gonad maturation. ISH detected that Sj-PP/OK positive signals existed in almost all regions of the optic lobe except the plexiform zone, the outer edge of all functional lobes in the brain, epithelial cells and the outer membrane layer of the accessory nidamental gland. These findings suggest that Sj-PP/OK might play a role in the regulation of reproduction, such as vitellogenin synthesis, restoration, and ova encapsulation.

Conclusion::The study indicated that Sj-PP/OK may be involved in the neuroendocrine regulation in cephalopods, providing primary theoretical basis for further studies of its regulation role in reproduction.

Авторлар туралы

Gong Li

National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University,

Email: info@benthamscience.net

Jiayin Qiu

National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University

Email: info@benthamscience.net

Huimin Cao

National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University

Email: info@benthamscience.net

Libing Zheng

National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Changfeng Chi

National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Shuang Li

National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean Development Institute

Email: info@benthamscience.net

Xu Zhou

National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University,

Email: info@benthamscience.net

Әдебиет тізімі

  1. Gui, S.H.; Jiang, H.B.; Smagghe, G.; Wang, J.J. The neuropeptides and protein hormones of the agricultural pest fruit fly Bactrocera dorsalis: What do we learn from the genome sequencing and tissue-specific transcriptomes? Peptides, 2017, 98, 29-34. doi: 10.1016/j.peptides.2017.10.009 PMID: 29061318
  2. Rowe, M.L.; Elphick, M.R. The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen. Comp. Endocrinol., 2012, 179(3), 331-344. doi: 10.1016/j.ygcen.2012.09.009 PMID: 23026496
  3. Hall, J.D.; Lloyd, P.E. Involvement of pedal peptide in locomotion inAplysia: Modulation of foot muscle contractions. J. Neurobiol., 1990, 21(6), 858-868. doi: 10.1002/neu.480210604 PMID: 2077102
  4. Stangier, J.; Hilbich, C.; Burdzik, S.; Keller, R. Orcokinin: A novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides, 1992, 13(5), 859-864. doi: 10.1016/0196-9781(92)90041-Z PMID: 1480511
  5. Lloyd, P.E.; Connolly, C.M. Sequence of pedal peptide: A novel neuropeptide from the central nervous system of Aplysia. J. Neurosci., 1989, 9(1), 312-317. doi: 10.1523/JNEUROSCI.09-01-00312.1989 PMID: 2913209
  6. Pearson, W.L.; Lloyd, P.E. Immunocytological localization of pedal peptide in the central nervous system and periphery of Aplysia. J. Neurosci., 1989, 9(1), 318-325. doi: 10.1523/JNEUROSCI.09-01-00318.1989 PMID: 2913210
  7. Moroz, L.L.; Edwards, J.R.; Puthanveettil, S.V.; Kohn, A.B.; Ha, T.; Heyland, A.; Knudsen, B.; Sahni, A.; Yu, F.; Liu, L.; Jezzini, S.; Lovell, P.; Iannucculli, W.; Chen, M.; Nguyen, T.; Sheng, H.; Shaw, R.; Kalachikov, S.; Panchin, Y.V.; Farmerie, W.; Russo, J.J.; Ju, J.; Kandel, E.R. Neuronal transcriptome of Aplysia: Neuronal compartments and circuitry. Cell, 2006, 127(7), 1453-1467. doi: 10.1016/j.cell.2006.09.052 PMID: 17190607
  8. Veenstra, J.A. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen. Comp. Endocrinol., 2010, 167(1), 86-103. doi: 10.1016/j.ygcen.2010.02.010 PMID: 20171220
  9. Conzelmann, M.; Williams, E.A.; Krug, K.; Franz-Wachtel, M.; Macek, B.; Jékely, G. The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics, 2013, 14(1), 906. doi: 10.1186/1471-2164-14-906 PMID: 24359412
  10. Rowe, M.L.; Achhala, S.; Elphick, M.R. Neuropeptides and polypeptide hormones in echinoderms: New insights from analysis of the transcriptome of the sea cucumber Apostichopus japonicus. Gen. Comp. Endocrinol., 2014, 197, 43-55. doi: 10.1016/j.ygcen.2013.12.002 PMID: 24345384
  11. Willows, A.O.D.; Pavlova, G.A.; Phillips, N.E. Modulation of ciliary beat frequency by neuropeptides from identified molluscan neurons. J. Exp. Biol., 1997, 200(10), 1433-1439. doi: 10.1242/jeb.200.10.1433 PMID: 9192496
  12. Popescu, I.R.; Willows, A.O.D. Sources of magnetic sensory input to identified neurons active during crawling in the marine mollusc Tritonia diomedea. J. Exp. Biol., 1999, 202(21), 3029-3036. doi: 10.1242/jeb.202.21.3029 PMID: 10518484
  13. Murray, J.; Hewes, R.; Willows, A.O.D. Water-flow sensitive pedal neurons in Tritonia: Role in rheotaxis. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1992, 171(3), 373-385. doi: 10.1007/BF00223967 PMID: 1447725
  14. Gaston, M.R. Neuropeptide TPep action on salivary duct ciliary beating rate in the nudibranch molluscTritonia diomedea. Invert. Neurosci., 1998, 3(4), 327-333. doi: 10.1007/BF02577692 PMID: 10212400
  15. Beck, J.C.; Cooper, M.S.; Willows, A.O.D. Immunocytochemical localization of pedal peptide in the central nervous system of the gastropod molluscTritonia diomedea. J. Comp. Neurol., 2000, 425(1), 1-9. doi: 10.1002/1096-9861(20000911)425:13.0.CO;2-Y PMID: 10940937
  16. Malyshev, A.Y.; Norekian, T.P.; Willows, A.O.D. Differential effects of serotonergic and peptidergic cardioexcitatory neurons on the heart activity in the pteropod mollusc, Clione limacina. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1999, 185(6), 551-560. doi: 10.1007/s003590050415 PMID: 10633556
  17. Jékely, G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. USA, 2013, 110(21), 8702-8707. doi: 10.1073/pnas.1221833110 PMID: 23637342
  18. Skiebe, P.; Dreger, M.; Meseke, M.; Evers, J.F.; Hucho, F. Identification of orcokinins in single neurons in the stomatogastric nervous system of the crayfish,Cherax destructor. J. Comp. Neurol., 2002, 444(3), 245-259. doi: 10.1002/cne.10145 PMID: 11840478
  19. Dircksen, H.; Burdzik, S.; Sauter, A.; Keller, R. Two orcokinins and the novel octapeptide orcomyotropin in the hindgut of the crayfish Orconectes limosus: identified myostimulatory neuropeptides originating together in neurones of the terminal abdominal ganglion. J. Exp. Biol., 2000, 203(18), 2807-2818. doi: 10.1242/jeb.203.18.2807 PMID: 10952880
  20. Jiang, H.; Kim, H.G.; Park, Y. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum. Insect Biochem. Mol. Biol., 2015, 65, 1-9. doi: 10.1016/j.ibmb.2015.07.009 PMID: 26235678
  21. Veenstra, J.A. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front. Physiol., 2014, 5, 454. doi: 10.3389/fphys.2014.00454 PMID: 25477824
  22. Sterkel, M.; Oliveira, P.L.; Urlaub, H.; Hernandez-Martinez, S.; Rivera-Pomar, R.; Ons, S. OKB, a novel family of brain-gut neuropeptides from insects. Insect Biochem. Mol. Biol., 2012, 42(7), 466-473. doi: 10.1016/j.ibmb.2012.03.003 PMID: 22480496
  23. Veenstra, J.A. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen. Comp. Endocrinol., 2016, 229, 41-55. doi: 10.1016/j.ygcen.2015.11.019 PMID: 26928473
  24. Chipman, A.D.; Ferrier, D.E.K.; Brena, C.; Qu, J.; Hughes, D.S.T.; Schröder, R.; Torres-Oliva, M.; Znassi, N.; Jiang, H.; Almeida, F.C.; Alonso, C.R.; Apostolou, Z.; Aqrawi, P.; Arthur, W.; Barna, J.C.J.; Blankenburg, K.P.; Brites, D.; Capella-Gutiérrez, S.; Coyle, M.; Dearden, P.K.; Du Pasquier, L.; Duncan, E.J.; Ebert, D.; Eibner, C.; Erikson, G.; Evans, P.D.; Extavour, C.G.; Francisco, L.; Gabaldón, T.; Gillis, W.J.; Goodwin-Horn, E.A.; Green, J.E.; Griffiths-Jones, S.; Grimmelikhuijzen, C.J.P.; Gubbala, S.; Guigó, R.; Han, Y.; Hauser, F.; Havlak, P.; Hayden, L.; Helbing, S.; Holder, M.; Hui, J.H.L.; Hunn, J.P.; Hunnekuhl, V.S.; Jackson, L.; Javaid, M.; Jhangiani, S.N.; Jiggins, F.M.; Jones, T.E.; Kaiser, T.S.; Kalra, D.; Kenny, N.J.; Korchina, V.; Kovar, C.L.; Kraus, F.B.; Lapraz, F.; Lee, S.L.; Lv, J.; Mandapat, C.; Manning, G.; Mariotti, M.; Mata, R.; Mathew, T.; Neumann, T.; Newsham, I.; Ngo, D.N.; Ninova, M.; Okwuonu, G.; Ongeri, F.; Palmer, W.J.; Patil, S.; Patraquim, P.; Pham, C.; Pu, L.L.; Putman, N.H.; Rabouille, C.; Ramos, O.M.; Rhodes, A.C.; Robertson, H.E.; Robertson, H.M.; Ronshaugen, M.; Rozas, J.; Saada, N.; Sánchez-Gracia, A.; Scherer, S.E.; Schurko, A.M.; Siggens, K.W.; Simmons, D.; Stief, A.; Stolle, E.; Telford, M.J.; Tessmar-Raible, K.; Thornton, R.; van der Zee, M.; von Haeseler, A.; Williams, J.M.; Willis, J.H.; Wu, Y.; Zou, X.; Lawson, D.; Muzny, D.M.; Worley, K.C.; Gibbs, R.A.; Akam, M.; Richards, S. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol., 2014, 12(11), e1002005. doi: 10.1371/journal.pbio.1002005 PMID: 25423365
  25. Jiang, X.M.; Fang-Yao, F.U.; Zheng, L.I.; Feng, X.D. Study on the oogenesis and ovarial development of Sepiella maindroni. Shuichan Xuebao, 2007, 31, 607-617.
  26. Lü, Z.; Liu, W.; Liu, L.; Shi, H.; Ping, H.; Wang, T.; Chi, C.; Wu, C.; Chen, C.H.; Shen, K.N.; Hsiao, C.D. De novo assembly and comparison of the ovarian transcriptomes of the common Chinese cuttlefish ( Sepiella japonica ) with different gonadal development. Genom. Data, 2016, 7, 155-158. doi: 10.1016/j.gdata.2015.12.011 PMID: 26981395
  27. Zheng, L.B.; Liu, Z.H.; Wu, B.; Dong, Y.H.; Zhou, L.Q.; Tian, J.T.; Sun, X.J.; Yang, A.G. Ferritin plays an important role in immune process of Scapharca broughtonii. Dev. Comp. Immunol., 2016, 59, 15-24. doi: 10.1016/j.dci.2015.12.010 PMID: 26724973
  28. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609
  29. Du, Q.X.; Cheng, X.H.; Zhu, X.Y.; Wang, Y.Y.; Sun, J.H. Application of multiple reference genes for TAB2 mRNA expression in rat skeletal muscle. Chin. J. Forensic Med., 2016, 31, 231-237.
  30. Zheng, L.; Qiu, J.; Chen, J.; Zheng, W.; Pan, Y. Histopathological changes and piscidin 5-like location in infected Larimichthys crocea with parasite Cryptocaryon irritans. Fish Shellfish Immunol., 2020, 99, 52-58. doi: 10.1016/j.fsi.2020.01.017 PMID: 31935553
  31. Wulff, J.P.; Sierra, I.; Sterkel, M.; Holtof, M.; Van Wielendaele, P.; Francini, F.; Broeck, J.V.; Ons, S. Orcokinin neuropeptides regulate ecdysis in the hemimetabolous insect Rhodnius prolixus. Insect Biochem. Mol. Biol., 2017, 81, 91-102. doi: 10.1016/j.ibmb.2017.01.003 PMID: 28089691
  32. Ons, S.; Bellés, X.; Maestro, J.L. Orcokinins contribute to the regulation of vitellogenin transcription in the cockroach Blattella germanica. J. Insect Physiol., 2015, 82, 129-133.
  33. Veenstra, J.A. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch. Insect Biochem. Physiol., 2000, 43(2), 49-63. doi: 10.1002/(SICI)1520-6327(200002)43:23.0.CO;2-M PMID: 10644969
  34. Wang, P.; Cui, Q.; Zhang, Y.; Wang, X.; Huang, X.; Li, X.; Zhao, Q.; Lei, G.; Li, B.; Wei, W. A review of Pedal peptide/Orcokinin-type neuropeptides. Curr. Protein Pept. Sci., 2021, 22(1), 41-49. doi: 10.2174/1389203721666201109112758 PMID: 33167831
  35. Li, L.; Pulver, S.R.; Kelley, W.P.; Thirumalai, V.; Sweedler, J.V.; Marder, E. Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J. Comp. Neurol., 2002, 444(3), 227-244. doi: 10.1002/cne.10139 PMID: 11840477
  36. Bungart, D.; Dircksen, H.; Keller, R. Quantitative determination and distribution of the myotropic neuropeptide orcokinin in the nervous system of astacidean crustaceans. Peptides, 1994, 15(3), 393-400. doi: 10.1016/0196-9781(94)90194-5 PMID: 7937311
  37. Kim, C.H.; Kim, E.J.; Go, H.J.; Oh, H.Y.; Lin, M.; Elphick, M.R.; Park, N.G. Identification of a novel starfish neuropeptide that acts as a muscle relaxant. J. Neurochem., 2016, 137(1), 33-45. doi: 10.1111/jnc.13543 PMID: 26801824
  38. Lin, M.; Egertová, M.; Zampronio, C.G.; Jones, A.M.; Elphick, M.R. Pedal peptide/orcokinin‐type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J. Comp. Neurol., 2017, 525(18), 3890-3917. doi: 10.1002/cne.24309 PMID: 28880392
  39. Newth, D.R. The anatomy of the nervous system of Octopus vulgaris; Oxford University Press: London, 1971, p. 690.
  40. Di Cosmo, A.; Di Cristo, C. Neuropeptidergic control of the optic gland ofOctopus vulgaris: FMRF-amide and GnRH immunoreactivity. J. Comp. Neurol., 1998, 398(1), 1-12. doi: 10.1002/(SICI)1096-9861(19980817)398:13.0.CO;2-5 PMID: 9703024
  41. Le Gall, S.; Féral, C.; Van Minnen, J.; Marchand, C.R. Evidence for peptidergic innervation of the endocrine optic gland inSepia by neurons showing FMRFamide-like immunoreactivity. Brain Res., 1988, 462(1), 83-88. doi: 10.1016/0006-8993(88)90588-4 PMID: 3179738
  42. Di Cristo, C.; Bovi, P.D.; Di Cosmo, A. Role of FMRFamide in the reproduction of Octopus vulgaris: molecular analysis and effect on visual input. Peptides, 2003, 24(10), 1525-1532. doi: 10.1016/j.peptides.2003.07.018 PMID: 14706531
  43. Huang, J.D.; Lee, S.Y.; Chiang, T.Y.; Lu, C.C.; Lee, M.F. Morphology of reproductive accessory glands in female Sepia pharaonis (Cephalopoda: Sepiidae) sheds light on egg encapsulation. J. Morphol., 2018, 279(8), 1120-1131. doi: 10.1002/jmor.20835 PMID: 29732604
  44. Pearson, W.L.; Lloyd, P.E. Distribution and characterization of pedal peptide immunoreactivity inAplysia. J. Neurobiol., 1990, 21(6), 883-892. doi: 10.1002/neu.480210606 PMID: 1706411
  45. Song, C.P.; Sun, L.; Zheng, L.; Chi, C. Gonadotropin-releasing hormone-like gene in the cephalopod, Sepia pharaonis : characterization, expression analysis, and localization in the brain. Invertebr. Reprod. Dev., 2021, 65(3), 226-234. doi: 10.1080/07924259.2021.1935335
  46. Albertin, C.B.; Simakov, O.; Mitros, T.; Wang, Z.Y.; Pungor, J.R.; Edsinger-Gonzales, E.; Brenner, S.; Ragsdale, C.W.; Rokhsar, D.S. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 2015, 524(7564), 220-224. doi: 10.1038/nature14668 PMID: 26268193
  47. Silva, V.; Palacios-Muñoz, A.; Volonté, M.; Frenkel, L.; Ewer, J.; Ons, S. Orcokinin neuropeptides regulate reproduction in the fruit fly, Drosophila melanogaster. Insect Biochem. Mol. Biol., 2021, 139, 103676. doi: 10.1016/j.ibmb.2021.103676 PMID: 34742859

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024