Molecular Characterization, Expression and In Situ Hybridization Analysis of a Pedal Peptide/Orcokinin-type Neuropeptide in Cuttlefish Sepiella japonica
- Авторлар: Li G.1, Qiu J.2, Cao H.3, Zheng L.3, Chi C.2, Li S.4, Zhou X.1
-
Мекемелер:
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University,
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean Development Institute
- Шығарылым: Том 25, № 4 (2024)
- Беттер: 326-338
- Бөлім: Life Sciences
- URL: https://rjsvd.com/1389-2037/article/view/645610
- DOI: https://doi.org/10.2174/0113892037255378231101065721
- ID: 645610
Дәйексөз келтіру
Толық мәтін
Аннотация
Background::Neuropeptide pedal peptide (PP) and orcokinin (OK), which are structurally related active peptides, have been widely discovered in invertebrates and constitute the PP/OK neuropeptide family. They have complex structures and play myriad roles in physiological processes. To date, there have been no related reports of PP/OK-type neuropeptide in cephalopods, which possess a highly differentiated multi-lobular brain.
Methods::Rapid Amplification of cDNA Ends (RACE) was employed to obtain the open reading frame (ORF) of PP/OK-type neuropeptide in Sepiella japonica (termed as Sj-PP/OK). Various software were used for sequence analysis. Semi-quantitative PCR was applied to analyze the tissue distribution profile, quantitative real-time PCR (qRT-PCR) was used to study spatio-temporal expression throughout the entire growth and development period, and in situ hybridization (ISH) was employed to observe the tissue location of Sj-PP/OK.
Results::in the present study, we identified the ORF of Sj-PP/OK. The putative precursor of Sj-PP/ OK encodes 22 mature peptides, of which only tridecapeptides could undergo post-translationally amidated at C-terminus. Each of these tridecapeptides possesses the most conserved and frequent N-terminus Asp-Ser-Ile (DSI). Sequence analysis revealed that Sj-PP/OK shared comparatively low identity with other invertebrates PP or OK. The tissue distribution profile showed differences in the expression level of Sj-PP/OK between male and female. qRT-PCR data demonstrated that Sj-PP/OK was widely distributed in various tissues, with its expression level increasing continuously in the brain, optic lobe, liver, and nidamental gland throughout the entire growth and development stages until gonad maturation. ISH detected that Sj-PP/OK positive signals existed in almost all regions of the optic lobe except the plexiform zone, the outer edge of all functional lobes in the brain, epithelial cells and the outer membrane layer of the accessory nidamental gland. These findings suggest that Sj-PP/OK might play a role in the regulation of reproduction, such as vitellogenin synthesis, restoration, and ova encapsulation.
Conclusion::The study indicated that Sj-PP/OK may be involved in the neuroendocrine regulation in cephalopods, providing primary theoretical basis for further studies of its regulation role in reproduction.
Авторлар туралы
Gong Li
National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University,
Email: info@benthamscience.net
Jiayin Qiu
National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University
Email: info@benthamscience.net
Huimin Cao
National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University
Email: info@benthamscience.net
Libing Zheng
National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Changfeng Chi
National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Shuang Li
National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean Development Institute
Email: info@benthamscience.net
Xu Zhou
National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology,, Zhejiang Ocean University,
Email: info@benthamscience.net
Әдебиет тізімі
- Gui, S.H.; Jiang, H.B.; Smagghe, G.; Wang, J.J. The neuropeptides and protein hormones of the agricultural pest fruit fly Bactrocera dorsalis: What do we learn from the genome sequencing and tissue-specific transcriptomes? Peptides, 2017, 98, 29-34. doi: 10.1016/j.peptides.2017.10.009 PMID: 29061318
- Rowe, M.L.; Elphick, M.R. The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen. Comp. Endocrinol., 2012, 179(3), 331-344. doi: 10.1016/j.ygcen.2012.09.009 PMID: 23026496
- Hall, J.D.; Lloyd, P.E. Involvement of pedal peptide in locomotion inAplysia: Modulation of foot muscle contractions. J. Neurobiol., 1990, 21(6), 858-868. doi: 10.1002/neu.480210604 PMID: 2077102
- Stangier, J.; Hilbich, C.; Burdzik, S.; Keller, R. Orcokinin: A novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides, 1992, 13(5), 859-864. doi: 10.1016/0196-9781(92)90041-Z PMID: 1480511
- Lloyd, P.E.; Connolly, C.M. Sequence of pedal peptide: A novel neuropeptide from the central nervous system of Aplysia. J. Neurosci., 1989, 9(1), 312-317. doi: 10.1523/JNEUROSCI.09-01-00312.1989 PMID: 2913209
- Pearson, W.L.; Lloyd, P.E. Immunocytological localization of pedal peptide in the central nervous system and periphery of Aplysia. J. Neurosci., 1989, 9(1), 318-325. doi: 10.1523/JNEUROSCI.09-01-00318.1989 PMID: 2913210
- Moroz, L.L.; Edwards, J.R.; Puthanveettil, S.V.; Kohn, A.B.; Ha, T.; Heyland, A.; Knudsen, B.; Sahni, A.; Yu, F.; Liu, L.; Jezzini, S.; Lovell, P.; Iannucculli, W.; Chen, M.; Nguyen, T.; Sheng, H.; Shaw, R.; Kalachikov, S.; Panchin, Y.V.; Farmerie, W.; Russo, J.J.; Ju, J.; Kandel, E.R. Neuronal transcriptome of Aplysia: Neuronal compartments and circuitry. Cell, 2006, 127(7), 1453-1467. doi: 10.1016/j.cell.2006.09.052 PMID: 17190607
- Veenstra, J.A. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen. Comp. Endocrinol., 2010, 167(1), 86-103. doi: 10.1016/j.ygcen.2010.02.010 PMID: 20171220
- Conzelmann, M.; Williams, E.A.; Krug, K.; Franz-Wachtel, M.; Macek, B.; Jékely, G. The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics, 2013, 14(1), 906. doi: 10.1186/1471-2164-14-906 PMID: 24359412
- Rowe, M.L.; Achhala, S.; Elphick, M.R. Neuropeptides and polypeptide hormones in echinoderms: New insights from analysis of the transcriptome of the sea cucumber Apostichopus japonicus. Gen. Comp. Endocrinol., 2014, 197, 43-55. doi: 10.1016/j.ygcen.2013.12.002 PMID: 24345384
- Willows, A.O.D.; Pavlova, G.A.; Phillips, N.E. Modulation of ciliary beat frequency by neuropeptides from identified molluscan neurons. J. Exp. Biol., 1997, 200(10), 1433-1439. doi: 10.1242/jeb.200.10.1433 PMID: 9192496
- Popescu, I.R.; Willows, A.O.D. Sources of magnetic sensory input to identified neurons active during crawling in the marine mollusc Tritonia diomedea. J. Exp. Biol., 1999, 202(21), 3029-3036. doi: 10.1242/jeb.202.21.3029 PMID: 10518484
- Murray, J.; Hewes, R.; Willows, A.O.D. Water-flow sensitive pedal neurons in Tritonia: Role in rheotaxis. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1992, 171(3), 373-385. doi: 10.1007/BF00223967 PMID: 1447725
- Gaston, M.R. Neuropeptide TPep action on salivary duct ciliary beating rate in the nudibranch molluscTritonia diomedea. Invert. Neurosci., 1998, 3(4), 327-333. doi: 10.1007/BF02577692 PMID: 10212400
- Beck, J.C.; Cooper, M.S.; Willows, A.O.D. Immunocytochemical localization of pedal peptide in the central nervous system of the gastropod molluscTritonia diomedea. J. Comp. Neurol., 2000, 425(1), 1-9. doi: 10.1002/1096-9861(20000911)425:13.0.CO;2-Y PMID: 10940937
- Malyshev, A.Y.; Norekian, T.P.; Willows, A.O.D. Differential effects of serotonergic and peptidergic cardioexcitatory neurons on the heart activity in the pteropod mollusc, Clione limacina. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1999, 185(6), 551-560. doi: 10.1007/s003590050415 PMID: 10633556
- Jékely, G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. USA, 2013, 110(21), 8702-8707. doi: 10.1073/pnas.1221833110 PMID: 23637342
- Skiebe, P.; Dreger, M.; Meseke, M.; Evers, J.F.; Hucho, F. Identification of orcokinins in single neurons in the stomatogastric nervous system of the crayfish,Cherax destructor. J. Comp. Neurol., 2002, 444(3), 245-259. doi: 10.1002/cne.10145 PMID: 11840478
- Dircksen, H.; Burdzik, S.; Sauter, A.; Keller, R. Two orcokinins and the novel octapeptide orcomyotropin in the hindgut of the crayfish Orconectes limosus: identified myostimulatory neuropeptides originating together in neurones of the terminal abdominal ganglion. J. Exp. Biol., 2000, 203(18), 2807-2818. doi: 10.1242/jeb.203.18.2807 PMID: 10952880
- Jiang, H.; Kim, H.G.; Park, Y. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum. Insect Biochem. Mol. Biol., 2015, 65, 1-9. doi: 10.1016/j.ibmb.2015.07.009 PMID: 26235678
- Veenstra, J.A. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front. Physiol., 2014, 5, 454. doi: 10.3389/fphys.2014.00454 PMID: 25477824
- Sterkel, M.; Oliveira, P.L.; Urlaub, H.; Hernandez-Martinez, S.; Rivera-Pomar, R.; Ons, S. OKB, a novel family of brain-gut neuropeptides from insects. Insect Biochem. Mol. Biol., 2012, 42(7), 466-473. doi: 10.1016/j.ibmb.2012.03.003 PMID: 22480496
- Veenstra, J.A. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen. Comp. Endocrinol., 2016, 229, 41-55. doi: 10.1016/j.ygcen.2015.11.019 PMID: 26928473
- Chipman, A.D.; Ferrier, D.E.K.; Brena, C.; Qu, J.; Hughes, D.S.T.; Schröder, R.; Torres-Oliva, M.; Znassi, N.; Jiang, H.; Almeida, F.C.; Alonso, C.R.; Apostolou, Z.; Aqrawi, P.; Arthur, W.; Barna, J.C.J.; Blankenburg, K.P.; Brites, D.; Capella-Gutiérrez, S.; Coyle, M.; Dearden, P.K.; Du Pasquier, L.; Duncan, E.J.; Ebert, D.; Eibner, C.; Erikson, G.; Evans, P.D.; Extavour, C.G.; Francisco, L.; Gabaldón, T.; Gillis, W.J.; Goodwin-Horn, E.A.; Green, J.E.; Griffiths-Jones, S.; Grimmelikhuijzen, C.J.P.; Gubbala, S.; Guigó, R.; Han, Y.; Hauser, F.; Havlak, P.; Hayden, L.; Helbing, S.; Holder, M.; Hui, J.H.L.; Hunn, J.P.; Hunnekuhl, V.S.; Jackson, L.; Javaid, M.; Jhangiani, S.N.; Jiggins, F.M.; Jones, T.E.; Kaiser, T.S.; Kalra, D.; Kenny, N.J.; Korchina, V.; Kovar, C.L.; Kraus, F.B.; Lapraz, F.; Lee, S.L.; Lv, J.; Mandapat, C.; Manning, G.; Mariotti, M.; Mata, R.; Mathew, T.; Neumann, T.; Newsham, I.; Ngo, D.N.; Ninova, M.; Okwuonu, G.; Ongeri, F.; Palmer, W.J.; Patil, S.; Patraquim, P.; Pham, C.; Pu, L.L.; Putman, N.H.; Rabouille, C.; Ramos, O.M.; Rhodes, A.C.; Robertson, H.E.; Robertson, H.M.; Ronshaugen, M.; Rozas, J.; Saada, N.; Sánchez-Gracia, A.; Scherer, S.E.; Schurko, A.M.; Siggens, K.W.; Simmons, D.; Stief, A.; Stolle, E.; Telford, M.J.; Tessmar-Raible, K.; Thornton, R.; van der Zee, M.; von Haeseler, A.; Williams, J.M.; Willis, J.H.; Wu, Y.; Zou, X.; Lawson, D.; Muzny, D.M.; Worley, K.C.; Gibbs, R.A.; Akam, M.; Richards, S. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol., 2014, 12(11), e1002005. doi: 10.1371/journal.pbio.1002005 PMID: 25423365
- Jiang, X.M.; Fang-Yao, F.U.; Zheng, L.I.; Feng, X.D. Study on the oogenesis and ovarial development of Sepiella maindroni. Shuichan Xuebao, 2007, 31, 607-617.
- Lü, Z.; Liu, W.; Liu, L.; Shi, H.; Ping, H.; Wang, T.; Chi, C.; Wu, C.; Chen, C.H.; Shen, K.N.; Hsiao, C.D. De novo assembly and comparison of the ovarian transcriptomes of the common Chinese cuttlefish ( Sepiella japonica ) with different gonadal development. Genom. Data, 2016, 7, 155-158. doi: 10.1016/j.gdata.2015.12.011 PMID: 26981395
- Zheng, L.B.; Liu, Z.H.; Wu, B.; Dong, Y.H.; Zhou, L.Q.; Tian, J.T.; Sun, X.J.; Yang, A.G. Ferritin plays an important role in immune process of Scapharca broughtonii. Dev. Comp. Immunol., 2016, 59, 15-24. doi: 10.1016/j.dci.2015.12.010 PMID: 26724973
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609
- Du, Q.X.; Cheng, X.H.; Zhu, X.Y.; Wang, Y.Y.; Sun, J.H. Application of multiple reference genes for TAB2 mRNA expression in rat skeletal muscle. Chin. J. Forensic Med., 2016, 31, 231-237.
- Zheng, L.; Qiu, J.; Chen, J.; Zheng, W.; Pan, Y. Histopathological changes and piscidin 5-like location in infected Larimichthys crocea with parasite Cryptocaryon irritans. Fish Shellfish Immunol., 2020, 99, 52-58. doi: 10.1016/j.fsi.2020.01.017 PMID: 31935553
- Wulff, J.P.; Sierra, I.; Sterkel, M.; Holtof, M.; Van Wielendaele, P.; Francini, F.; Broeck, J.V.; Ons, S. Orcokinin neuropeptides regulate ecdysis in the hemimetabolous insect Rhodnius prolixus. Insect Biochem. Mol. Biol., 2017, 81, 91-102. doi: 10.1016/j.ibmb.2017.01.003 PMID: 28089691
- Ons, S.; Bellés, X.; Maestro, J.L. Orcokinins contribute to the regulation of vitellogenin transcription in the cockroach Blattella germanica. J. Insect Physiol., 2015, 82, 129-133.
- Veenstra, J.A. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch. Insect Biochem. Physiol., 2000, 43(2), 49-63. doi: 10.1002/(SICI)1520-6327(200002)43:23.0.CO;2-M PMID: 10644969
- Wang, P.; Cui, Q.; Zhang, Y.; Wang, X.; Huang, X.; Li, X.; Zhao, Q.; Lei, G.; Li, B.; Wei, W. A review of Pedal peptide/Orcokinin-type neuropeptides. Curr. Protein Pept. Sci., 2021, 22(1), 41-49. doi: 10.2174/1389203721666201109112758 PMID: 33167831
- Li, L.; Pulver, S.R.; Kelley, W.P.; Thirumalai, V.; Sweedler, J.V.; Marder, E. Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J. Comp. Neurol., 2002, 444(3), 227-244. doi: 10.1002/cne.10139 PMID: 11840477
- Bungart, D.; Dircksen, H.; Keller, R. Quantitative determination and distribution of the myotropic neuropeptide orcokinin in the nervous system of astacidean crustaceans. Peptides, 1994, 15(3), 393-400. doi: 10.1016/0196-9781(94)90194-5 PMID: 7937311
- Kim, C.H.; Kim, E.J.; Go, H.J.; Oh, H.Y.; Lin, M.; Elphick, M.R.; Park, N.G. Identification of a novel starfish neuropeptide that acts as a muscle relaxant. J. Neurochem., 2016, 137(1), 33-45. doi: 10.1111/jnc.13543 PMID: 26801824
- Lin, M.; Egertová, M.; Zampronio, C.G.; Jones, A.M.; Elphick, M.R. Pedal peptide/orcokinin‐type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J. Comp. Neurol., 2017, 525(18), 3890-3917. doi: 10.1002/cne.24309 PMID: 28880392
- Newth, D.R. The anatomy of the nervous system of Octopus vulgaris; Oxford University Press: London, 1971, p. 690.
- Di Cosmo, A.; Di Cristo, C. Neuropeptidergic control of the optic gland ofOctopus vulgaris: FMRF-amide and GnRH immunoreactivity. J. Comp. Neurol., 1998, 398(1), 1-12. doi: 10.1002/(SICI)1096-9861(19980817)398:13.0.CO;2-5 PMID: 9703024
- Le Gall, S.; Féral, C.; Van Minnen, J.; Marchand, C.R. Evidence for peptidergic innervation of the endocrine optic gland inSepia by neurons showing FMRFamide-like immunoreactivity. Brain Res., 1988, 462(1), 83-88. doi: 10.1016/0006-8993(88)90588-4 PMID: 3179738
- Di Cristo, C.; Bovi, P.D.; Di Cosmo, A. Role of FMRFamide in the reproduction of Octopus vulgaris: molecular analysis and effect on visual input. Peptides, 2003, 24(10), 1525-1532. doi: 10.1016/j.peptides.2003.07.018 PMID: 14706531
- Huang, J.D.; Lee, S.Y.; Chiang, T.Y.; Lu, C.C.; Lee, M.F. Morphology of reproductive accessory glands in female Sepia pharaonis (Cephalopoda: Sepiidae) sheds light on egg encapsulation. J. Morphol., 2018, 279(8), 1120-1131. doi: 10.1002/jmor.20835 PMID: 29732604
- Pearson, W.L.; Lloyd, P.E. Distribution and characterization of pedal peptide immunoreactivity inAplysia. J. Neurobiol., 1990, 21(6), 883-892. doi: 10.1002/neu.480210606 PMID: 1706411
- Song, C.P.; Sun, L.; Zheng, L.; Chi, C. Gonadotropin-releasing hormone-like gene in the cephalopod, Sepia pharaonis : characterization, expression analysis, and localization in the brain. Invertebr. Reprod. Dev., 2021, 65(3), 226-234. doi: 10.1080/07924259.2021.1935335
- Albertin, C.B.; Simakov, O.; Mitros, T.; Wang, Z.Y.; Pungor, J.R.; Edsinger-Gonzales, E.; Brenner, S.; Ragsdale, C.W.; Rokhsar, D.S. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 2015, 524(7564), 220-224. doi: 10.1038/nature14668 PMID: 26268193
- Silva, V.; Palacios-Muñoz, A.; Volonté, M.; Frenkel, L.; Ewer, J.; Ons, S. Orcokinin neuropeptides regulate reproduction in the fruit fly, Drosophila melanogaster. Insect Biochem. Mol. Biol., 2021, 139, 103676. doi: 10.1016/j.ibmb.2021.103676 PMID: 34742859
Қосымша файлдар
