Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres
- 作者: Zhang J.1, Yuan S.1, Beng S.1, Luo W.2, Wang X.1, Wang L.1, Peng C.1
-
隶属关系:
- School of Pharmacy, Anhui University of Chinese Medicine
- School of Pharmacy, Anhui University of Chinese Medicin
- 期: 卷 25, 编号 4 (2024)
- 页面: 286-306
- 栏目: Life Sciences
- URL: https://rjsvd.com/1389-2037/article/view/645602
- DOI: https://doi.org/10.2174/0113892037277894231208065403
- ID: 645602
如何引用文章
全文:
详细
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
作者简介
Jing Zhang
School of Pharmacy, Anhui University of Chinese Medicine
Email: info@benthamscience.net
Shujie Yuan
School of Pharmacy, Anhui University of Chinese Medicine
Email: info@benthamscience.net
Shujuan Beng
School of Pharmacy, Anhui University of Chinese Medicine
Email: info@benthamscience.net
Wenhui Luo
School of Pharmacy, Anhui University of Chinese Medicin
Email: info@benthamscience.net
Xiaoqun Wang
School of Pharmacy, Anhui University of Chinese Medicine
Email: info@benthamscience.net
Lei Wang
School of Pharmacy, Anhui University of Chinese Medicine
Email: info@benthamscience.net
Can Peng
School of Pharmacy, Anhui University of Chinese Medicine
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Egas, D.A.; Wirth, M.J. Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu. Rev. Anal. Chem., 2008, 1(1), 833-855. doi: 10.1146/annurev.anchem.1.031207.112912 PMID: 20636099
- Link, A.J.; Washburn, M.P. Analysis of protein composition using multidimensional chromatography and mass spectrometry. Curr. Protoc. Protein Sci., 2014, 78(1), 1.1-, 25. doi: 10.1002/0471140864.ps2301s78 PMID: 25367006
- Darrouzain, F.; Bian, S.; Desvignes, C.; Bris, C.; Watier, H.; Paintaud, G.; de Vries, A. Immunoassays for measuring serum concentrations of monoclonal antibodies and anti-biopharmaceutical antibodies in patients. Ther. Drug Monit., 2017, 39(4), 316-321. doi: 10.1097/FTD.0000000000000419 PMID: 28570370
- Cao, H.; Huang, Y.; Liu, Z. Interplay between binding affinity and kinetics in proteinprotein interactions. Proteins, 2016, 84(7), 920-933. doi: 10.1002/prot.25041 PMID: 27018856
- Zhu, Z.; Lu, J.J.; Liu, S. Protein separation by capillary gel electrophoresis: A review. Anal. Chim. Acta, 2012, 709, 21-31. doi: 10.1016/j.aca.2011.10.022 PMID: 22122927
- Yu, L.; Sun, Y. Recent advances in protein chromatography with polymer-grafted media. J. Chromatogr. A.,, 2021, 1638, 461865. doi: 10.1016/j.chroma.2020.461865 PMID: 33453656
- Stastna, M. Continuous flow electrophoretic separation-recent developments and applications to biological sample analysis. Electrophoresis, 2020, 41(1-2), 36-55. doi: 10.1002/elps.201900288 PMID: 31650578
- Josic, D.; Kovac, S. Reversed-phase high performance liquid chromatography of proteins. Curr. Prot. Protein Sci., 2010, Chapter 8, 8.7.1-8.7.22. doi: 10.1002/0471140864.ps0807s61
- Armenta, J.M.; Gu, B.; Thulin, C.D.; Lee, M.L. Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G, preconcentration of low abundance proteins and separation by capillary zone electrophoresis. J. Chromatogr. A.,, 2007, 1148(1), 115-122. doi: 10.1016/j.chroma.2007.02.089 PMID: 17379232
- Wang, Y.; Xianyu, Y. Nanobody and nanozyme-enabled immunoassays with enhanced specificity and sensitivity. Small Methods, 2022, 6(4), 2101576. doi: 10.1002/smtd.202101576 PMID: 35266636
- Jahanban-Esfahlan, A.; Roufegarinejad, L.; Jahanban-Esfahlan, R.; Tabibiazar, M.; Amarowicz, R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, 207, 120317. doi: 10.1016/j.talanta.2019.120317 PMID: 31594596
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on coreshell magnetic molecularly imprinted polymers for biomacromolecules. Trends Analyt. Chem., 2019, 114, 202-217. doi: 10.1016/j.trac.2019.03.008
- Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev., 2018, 47(15), 5574-5587. doi: 10.1039/C7CS00854F PMID: 29876564
- Zhang, Q.; Li, Y.; Yang, Q.; Chen, H.; Chen, X.; Jiao, T.; Peng, Q. Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. J. Hazard. Mater., 2018, 342, 732-740. doi: 10.1016/j.jhazmat.2017.08.061 PMID: 28918291
- Zhu, X.; Li, H.; Liu, H.; Peng, W.; Zhong, S.; Wang, Y. Halloysite-based dopamine-imprinted polymer for selective protein capture. J. Sep. Sci., 2016, 39(12), 2431-2437. doi: 10.1002/jssc.201600168 PMID: 27121654
- Yin, Y.; Yan, L.; Zhang, Z.; Wang, J.; Luo, N. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. J. Sep. Sci., 2016, 39(8), 1480-1488. doi: 10.1002/jssc.201600026 PMID: 26989004
- Yan, L.; Wang, J.; Lv, P.; Xie, D.; Zhang, Z. A facile synthesis of novel three-dimensional magnetic imprinted polymers for rapid extraction of bovine serum albumin in bovine calf serum. Anal. Bioanal. Chem., 2017, 409(13), 3453-3463. doi: 10.1007/s00216-017-0283-0 PMID: 28341987
- Çakir, P.; Cutivet, A.; Resmini, M.; Bui, B.T.S.; Haupt, K. Protein-size molecularly imprinted polymer nanogels as synthetic antibodies, by localized polymerization with multi-initiators. Adv. Mater., 2013, 25(7), 1048-1051. doi: 10.1002/adma.201203400 PMID: 23135892
- Tamahkar, E.; Kutsal, T.; Denizli, A. Surface imprinted bacterial cellulose nanofibers for cytochrome c purification. Process Biochem., 2015, 50(12), 2289-2297. doi: 10.1016/j.procbio.2015.09.026
- Chen, F.; Zhao, W.; Zhang, J.; Kong, J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys. Chem. Chem. Phys., 2016, 18(2), 718-725. doi: 10.1039/C5CP04218F PMID: 26388494
- Zhang, N.; Zhang, N.; Xu, Y.; Li, Z.; Yan, C.; Mei, K.; Ding, M.; Ding, S.; Guan, P.; Qian, L.; Du, C.; Hu, X. Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun., 2019, 40(17), 1900096. doi: 10.1002/marc.201900096 PMID: 31111979
- Boitard, C.; Bée, A.; Ménager, C.; Griffete, N. Magnetic protein imprinted polymers: A review. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(11), 1563-1580. doi: 10.1039/C7TB02985C PMID: 32254273
- Abe, H.; Naka, T.; Sato, K.; Suzuki, Y.; Nakano, M. Shape-controlled syntheses of magnetite microparticles and their magnetorheology. Int. J. Mol. Sci., 2019, 20(15), 3617. doi: 10.3390/ijms20153617 PMID: 31344866
- Wu, W.; Jiang, C.Z.; Roy, V.A.L. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, 8(47), 19421-19474. doi: 10.1039/C6NR07542H PMID: 27812592
- Zoppellaro, G. Iron Oxide Magnetic Nanoparticles (NPs) tailored for biomedical applications. In: Magnetic Nanoheterostructures; , 2020; pp. 57-102.
- Gao, R.; Mu, X.; Hao, Y.; Zhang, L.; Zhang, J.; Tang, Y. Combination of surface imprinting and immobilized template techniques for preparation of coreshell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(12), 1733-1741. doi: 10.1039/C3TB21684E PMID: 32261403
- Gao, R.; Hao, Y.; Zhang, L.; Cui, X.; Liu, D.; Zhang, M.; Tang, Y.; Zheng, Y. A facile method for protein imprinting on directly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy. Chem. Eng. J., 2016, 284, 139-148. doi: 10.1016/j.cej.2015.08.123
- Hao, Y.; Gao, R.; Liu, D.; Zhang, B.; Tang, Y.; Guo, Z. Preparation of biocompatible molecularly imprinted shell on superparamagnetic iron oxide nanoparticles for selective depletion of bovine hemoglobin in biological sample. J. Colloid Interface Sci., 2016, 470, 100-107. doi: 10.1016/j.jcis.2016.02.051 PMID: 26939073
- Lin, M.; Huang, H.; Liu, Z.; Liu, Y.; Ge, J.; Fang, Y. Growth-dissolution-regrowth transitions of Fe33O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir, 2013, 29(49), 15433-15441. doi: 10.1021/la403577y PMID: 24256401
- Xuan, S.; Wang, Y.X.J.; Yu, J.C.; Cham-Fai Leung, K. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater., 2009, 21(21), 5079-5087. doi: 10.1021/cm901618m
- Li, Y.; Wang, Z.; Ali, Z.; Tian, K.; Xu, J.; Li, W.; Hou, Y. Monodisperse Fe3O4 spheres: Large-scale controlled synthesis in the absence of surfactants and chemical kinetic process. Sci. China Mater., 2019, 62(10), 1488-1495. doi: 10.1007/s40843-019-9466-x
- Gao, R.; Hao, Y.; Cui, X.; Zhang, L.; Liu, D.; Tang, Y. One-step synthesis of aldehyde-functionalized magnetic nanoparticles as adsorbent for fast and effective adsorption of proteins. J. Alloys Compd., 2015, 637, 461-465. doi: 10.1016/j.jallcom.2015.03.037
- Zhu, W.; Ma, W.; Li, C.; Pan, J.; Dai, X. Well-designed multihollow magnetic imprinted microspheres based on cellulose nanocrystals (CNCs) stabilized Pickering double emulsion polymerization for selective adsorption of bifenthrin. Chem. Eng. J., 2015, 276, 249-260. doi: 10.1016/j.cej.2015.04.084
- Liu, Y.; Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review. Mikrochim. Acta, 2016, 183(1), 1-19. doi: 10.1007/s00604-015-1623-4
- Jiang, L.; Lu, R.; Ye, L. Towards detection of glycoproteins using molecularly imprinted nanoparticles and boronic acid-modified fluorescent probe. Polymers, 2019, 11(1), 173. doi: 10.3390/polym11010173 PMID: 30960157
- Chen, F.; Mao, M.; Wang, J.; Liu, J.; Li, F. A dual-step immobilization/imprinting approach to prepare magnetic molecular imprinted polymers for selective removal of human serum albumin. Talanta, 2020, 209, 120509. doi: 10.1016/j.talanta.2019.120509 PMID: 31891993
- Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllableoriented surface imprinting. Nat. Protoc., 2017, 12(5), 964-987. doi: 10.1038/nprot.2017.015 PMID: 28384137
- Stephenson-Brown, A.; Acton, A.L.; Preece, J.A.; Fossey, J.S.; Mendes, P.M. Selective glycoprotein detection through covalent templating and allosteric click-imprinting. Chem. Sci., 2015, 6(9), 5114-5119. doi: 10.1039/C5SC02031J PMID: 29142730
- Ding, X.; Li, G.; Xiao, C.; Chen, X. Enhancing the stability of hydrogels by doubling the schiff base linkages. Macromol. Chem. Phys., 2018, 220.
- Baggiani, C.; Giovannoli, C.; Anfossi, L.; Passini, C.; Baravalle, P.; Giraudi, G. A connection between the binding properties of imprinted and nonimprinted polymers: A change of perspective in molecular imprinting. J. Am. Chem. Soc., 2012, 134(3), 1513-1518. doi: 10.1021/ja205632t PMID: 22188653
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev., 2016, 45(8), 2137-2211. doi: 10.1039/C6CS00061D PMID: 26936282
- Wang, X.; Wang, L.; He, X.; Zhang, Y.; Chen, L. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 2009, 78(2), 327-332. doi: 10.1016/j.talanta.2008.11.024 PMID: 19203590
- Zaidi, S.A. Molecular imprinting polymers and their composites: A promising material for diverse applications. Biomater. Sci., 2017, 5(3), 388-402. doi: 10.1039/C6BM00765A PMID: 28138673
- Bossi, A.; Bonini, F.; Turner, A.P.F.; Piletsky, S.A. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron., 2007, 22(6), 1131-1137. doi: 10.1016/j.bios.2006.06.023 PMID: 16891110
- Lu, S.; Cheng, G.; Pang, X. Protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility. II. Characteristics. J. Appl. Polym. Sci., 2006, 99(5), 2401-2407. doi: 10.1002/app.22812
- Wang, Y.; Chai, Z.; Sun, Y.; Gao, M.; Fu, G. Preparation of lysozyme imprinted magnetic nanoparticles via surface graft copolymerization. J. Biomater. Sci. Polym. Ed., 2015, 26(11), 644-656. doi: 10.1080/09205063.2015.1053215 PMID: 26073534
- Zhou, J.; Wang, Y.; Ma, Y.; Zhang, B.; Zhang, Q. Surface molecularly imprinted thermo-sensitive polymers based on light-weight hollow magnetic microspheres for specific recognition of BSA. Appl. Surf. Sci., 2019, 486, 265-273. doi: 10.1016/j.apsusc.2019.04.159
- Guo, H.; Yuan, D.; Fu, G. Enhanced surface imprinting of lysozyme over a new kind of magnetic chitosan submicrospheres. J. Colloid Interface Sci., 2015, 440, 53-59. doi: 10.1016/j.jcis.2014.10.059 PMID: 25460689
- Xie, J.; Zhong, G.; Cai, C.; Chen, C.; Chen, X. Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere. Talanta, 2017, 169, 98-103. doi: 10.1016/j.talanta.2017.03.065 PMID: 28411829
- Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed., 2019, 58(3), 696-714. doi: 10.1002/anie.201801063 PMID: 29573319
- Chen, W.; Fu, M.; Zhu, X.; Liu, Q. Protein recognition by polydopamine-based molecularly imprinted hollow spheres. Biosens. Bioelectron., 2019, 142, 111492. doi: 10.1016/j.bios.2019.111492 PMID: 31299590
- Ding, S.; Lyu, Z.; Niu, X.; Zhou, Y.; Liu, D.; Falahati, M.; Du, D.; Lin, Y. Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosens. Bioelectron., 2020, 149, 111830. doi: 10.1016/j.bios.2019.111830 PMID: 31710919
- Wei, X.; Wang, Y.; Chen, J.; Ni, R.; Meng, J.; Liu, Z.; Xu, F.; Zhou, Y. Ionic liquids skeleton typed magnetic core-shell molecularly imprinted polymers for the specific recognition of lysozyme. Anal. Chim. Acta, 2019, 1081, 81-92. doi: 10.1016/j.aca.2019.07.025 PMID: 31446968
- Xu, K.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Zhou, Y. Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Mikrochim. Acta, 2018, 185(2), 146. doi: 10.1007/s00604-018-2707-8 PMID: 29594602
- Liu, Y.; Wang, Y.; Dai, Q.; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal. Chim. Acta, 2016, 936, 168-178. doi: 10.1016/j.aca.2016.07.003 PMID: 27566352
- Liu, Z.; Wang, Y.; Xu, F.; Wei, X.; Chen, J.; Li, H.; He, X.; Zhou, Y. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal. Chim. Acta, 2020, 1129, 49-59. doi: 10.1016/j.aca.2020.06.052 PMID: 32891390
- Wang, P.; Yin, Y.; Xu, J.; Chen, S.; Wang, H. Facile synthesis of Cu2+-immobilized imprinted cotton for the selective adsorption of bovine hemoglobin. Cellulose, 2020, 27(2), 867-877. doi: 10.1007/s10570-019-02816-z
- Tao, Q.L.; Li, Y.; Shi, Y.; Liu, R.J.; Zhang, Y.W.; Guo, J. Application of molecular imprinted magnetic Fe3O4@SiO2 nanoparticles for selective immobilization of cellulase. J. Nanosci. Nanotechnol., 2016, 16(6), 6055-6060. doi: 10.1166/jnn.2016.10853 PMID: 27427671
- Kuhn, J.; Aylaz, G.; Sari, E.; Marco, M.; Yiu, H.H.P.; Duman, M. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles. J. Hazard. Mater., 2020, 387, 121709. doi: 10.1016/j.jhazmat.2019.121709 PMID: 31812475
- Chang, T.; Liu, Y.; Yan, X.; Liu, S.; Zheng, H. One-pot synthesis of uniform and monodisperse superparamagnetic molecularly imprinted polymer nanospheres through a solgel process for selective recognition of bisphenol A in aqueous media. RSC Advances, 2016, 6(70), 66297-66306. doi: 10.1039/C6RA10740K
- Wan, W.; Han, Q.; Zhang, X.; Xie, Y.; Sun, J.; Ding, M. Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting. Chem. Commun., 2015, 51(17), 3541-3544. doi: 10.1039/C4CC10205C PMID: 25644218
- Zhang, M.; Zhang, X.; He, X.; Chen, L.; Zhang, Y. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale, 2012, 4(10), 3141-3147. doi: 10.1039/c2nr30316g PMID: 22535306
- Kan, X.; Zhao, Q.; Shao, D.; Geng, Z.; Wang, Z.; Zhu, J.J. Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. J. Phys. Chem. B, 2010, 114(11), 3999-4004. doi: 10.1021/jp910060c PMID: 20184298
- Xu, J.; Medina-Rangel, P.X.; Haupt, K.; Tse Sum Bui, B. Guide to the preparation of molecularly imprinted polymer nanoparticles for protein recognition by solid-phase synthesis. Methods Enzymol., 2017, 590, 115-141. doi: 10.1016/bs.mie.2017.02.004 PMID: 28411635
- Bie, Z.; Chen, Y.; Ye, J.; Wang, S.; Liu, Z. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew. Chem. Int. Ed., 2015, 54(35), 10211-10215. doi: 10.1002/anie.201503066 PMID: 26179149
- Li, D.; Tu, T.; Yang, M.; Xu, C. Efficient preparation of surface imprinted magnetic nanoparticles using poly (2-anilinoethanol) as imprinting coating for the selective recognition of glycoprotein. Talanta, 2018, 184, 316-324. doi: 10.1016/j.talanta.2018.03.012 PMID: 29674048
- Chen, G.; Shu, H.; Wang, L.; Bashir, K.; Wang, Q.; Cui, X.; Li, X.; Luo, Z.; Chang, C.; Fu, Q. Facile one-step targeted immobilization of an enzyme based on silane emulsion self-assembled molecularly imprinted polymers for visual sensors. Analyst, 2020, 145(1), 268-276. doi: 10.1039/C9AN01777A PMID: 31746832
- Liu, Z.; He, H. Synthesis and applications of boronate affinity materials: From class selectivity to biomimetic specificity. Acc. Chem. Res., 2017, 50(9), 2185-2193. doi: 10.1021/acs.accounts.7b00179 PMID: 28849912
- Zhu, H.; Yao, H.; Xia, K.; Liu, J.; Yin, X.; Zhang, W.; Pan, J. Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH. Chem. Eng. J., 2018, 346, 317-328. doi: 10.1016/j.cej.2018.03.170
- Sun, X.Y.; Ma, R.T.; Chen, J.; Shi, Y.P. Magnetic boronate modified molecularly imprinted polymers on magnetite microspheres modified with porous TiO2 (Fe3O4@pTiO2@MIP) with enhanced adsorption capacity for glycoproteins and with wide operational pH range. Mikrochim. Acta, 2018, 185(12), 565. doi: 10.1007/s00604-018-3092-z PMID: 30498865
- Kartal, F.; Denizli, A. Surface molecularly imprinted magnetic microspheres for the recognition of albumin. J. Sep. Sci., 2014, 37(15), 2077-2086. doi: 10.1002/jssc.201400086 PMID: 24825245
- Chen, H.; Kong, J.; Yuan, D.; Fu, G. Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Biosens. Bioelectron., 2014, 53, 5-11. doi: 10.1016/j.bios.2013.09.037 PMID: 24099918
- Gao, R.; Zhang, L.; Hao, Y.; Cui, X.; Liu, D.; Zhang, M.; Tang, Y. One-step preparation of magnetic imprinted nanoparticles adopting dopamine-cupric ion as a co-monomer for the specific recognition of bovine hemoglobin. J. Sep. Sci., 2015, 38(20), 3568-3574. doi: 10.1002/jssc.201500677 PMID: 26332617
- Shi, L.; Tang, Y.; Hao, Y.; He, G.; Gao, R.; Tang, X. Selective adsorption of protein by a high-efficiency Cu2+ -cooperated magnetic imprinted nanomaterial. J. Sep. Sci., 2016, 39(14), 2876-2883. doi: 10.1002/jssc.201600413 PMID: 27234958
- Zhao, M.; Huang, S.; Xie, H.; Wang, J.; Zhao, X.; Li, M.; Zhao, M. Construction of specific and reversible nanoreceptors for proteins via sequential surface-imprinting strategy. Anal. Chem., 2020, 92(15), 10540-10547. doi: 10.1021/acs.analchem.0c01366 PMID: 32605364
- Zhou, J.; Wang, Y.; Bu, J.; Zhang, B.; Zhang, Q Ni2+-BSA directional coordination-assisted magnetic molecularly imprinted microspheres with enhanced specific rebinding to target proteins. ACS Appl. Mater. Interfaces, 2019, 11(29), 25682-25690. doi: 10.1021/acsami.9b06507 PMID: 31246393
- Gai, Q.Q.; Qu, F.; Zhang, T.; Zhang, Y.K. The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation. J. Chromatogr. A, 2011, 1218(22), 3489-3495. doi: 10.1016/j.chroma.2011.03.069 PMID: 21511265
- Verheyen, E.; Schillemans, J.P.; van Wijk, M.; Demeniex, M.A.; Hennink, W.E.; van Nostrum, C.F. Challenges for the effective molecular imprinting of proteins. Biomaterials, 2011, 32(11), 3008-3020. doi: 10.1016/j.biomaterials.2011.01.007 PMID: 21288565
- Zhang, Z.; Wang, H.; Wang, H.; Wu, C.; Li, M.; Li, L. Fabrication and evaluation of molecularly imprinted magnetic nanoparticles for selective recognition and magnetic separation of lysozyme in human urine. Analyst, 2018, 143(23), 5849-5856. doi: 10.1039/C8AN01746H PMID: 30382260
- Liu, Y.; Wang, S.; Zhang, C.; Su, X.; Huang, S.; Zhao, M. Enhancing the selectivity of enzyme detection by using tailor-made nanoparticles. Anal. Chem., 2013, 85(10), 4853-4857. doi: 10.1021/ac4007914 PMID: 23654199
- Men, H.F.; Liu, H.Q.; Zhang, Z.L.; Huang, J.; Zhang, J.; Zhai, Y.Y.; Li, L. Synthesis, properties and application research of atrazine Fe3O4@SiO2 magnetic molecularly imprinted polymer. Environ. Sci. Pollut. Res. Int., 2012, 19(6), 2271-2280. doi: 10.1007/s11356-011-0732-9 PMID: 22246642
- Li, W.; Chen, M.; Xiong, H.; Wen, W.; He, H.; Zhang, X.; Wang, S. Surface protein imprinted magnetic nanoparticles for specific recognition of bovine hemoglobin. New J. Chem., 2016, 40(1), 564-570. doi: 10.1039/C5NJ02879E
- Su, Y.; Qiu, B.; Chang, C.; Li, X.; Zhang, M.; Zhou, B.; Yang, Y. Separation of bovine hemoglobin using novel magnetic molecular imprinted nanoparticles. RSC Advances, 2018, 8(11), 6192-6199. doi: 10.1039/C7RA12457K PMID: 35539629
- Liu, Y.; Gu, Y.; Li, M.; Wei, Y. Protein imprinting over magnetic nanospheres via a surface grafted polymer for specific capture of hemoglobin. New J. Chem., 2014, 38(12), 6064-6072. doi: 10.1039/C4NJ01262C
- Cheng, Y.; Nie, J.; Li, J.; Liu, H.; Yan, Z.; Kuang, L. Synthesis and characterization of coreshell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chem., 2019, 287, 100-106. doi: 10.1016/j.foodchem.2019.02.069 PMID: 30857677
- Li, Y.; Hong, M.; Miaomiao; Bin, Q.; Lin, Z.; Cai, Z.; Chen, G. Novel composites of multifunctional Fe3O4@Au nanofibers for highly efficient glycoprotein imprinting. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(7), 1044-1051. doi: 10.1039/c2tb00149g PMID: 32262368
- Liu, Z.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S. Core-shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustain. Chem.& Eng., 2019.
- Li, Y.; Chen, Y.; Huang, L.; Lou, B.; Chen, G. Creating BHb-imprinted magnetic nanoparticles with multiple binding sites. Analyst, 2017, 142(2), 302-309. doi: 10.1039/C6AN02121B PMID: 27924985
- Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Mikrochim. Acta, 2016, 183(10), 2677-2695. doi: 10.1007/s00604-016-1930-4
- Li, Y.; Huang, L.; Wang, X.; Chen, Y. A study of electrochemical sensor based on BHb-imprinted magnetic nanoparticles. Anal. Sci., 2017, 33(10), 1105-1110. doi: 10.2116/analsci.33.1105 PMID: 28993582
- Ma, W.; Dai, Y.; Row, K.H. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophoresis, 2018, 39(15), 2039-2046. doi: 10.1002/elps.201800034 PMID: 29450897
- Yuan, B.; Yang, X.; Xue, L.; Feng, Y.; Jiang, J. A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: Synergistic recovery of anthocyanin from fruit and vegetable waste. Bioresour. Technol., 2016, 222, 14-23. doi: 10.1016/j.biortech.2016.09.088 PMID: 27697733
- Zhang, W.; Zhu, Z.; Zhang, H.; Qiu, Y. Selective removal of the genotoxic compound 2-aminopyridine in water using molecularly imprinted polymers based on magnetic chitosan and β-cyclodextrin. Int. J. Environ. Res. Public Health, 2017, 14(9), 991. doi: 10.3390/ijerph14090991 PMID: 28858259
- Lv, Y.; Tan, T.; Svec, F. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol. Adv., 2013, 31(8), 1172-1186. doi: 10.1016/j.biotechadv.2013.02.005 PMID: 23466364
- Yang, S.; Zhang, X.; Zhao, W.; Sun, L.; Luo, A. Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation. J. Mater. Sci., 2015, 51, 937-949.
- Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 2019, 195, 390-400. doi: 10.1016/j.talanta.2018.11.065 PMID: 30625559
- Lee, M.H.; Ahluwalia, A.; Hsu, K.M.; Chin, W.T.; Lin, H.Y. Extraction of alpha-fetoprotein (AFP) with magnetic albuminoid-imprinted poly(ethylene-co-vinyl alcohol) nanoparticles from human hepatocellular carcinoma HepG2 cellular culture medium. RSC Advances, 2014, 4(70), 36990-36995. doi: 10.1039/C4RA07378A
- Fresco-Cala, B.; Mizaikoff, B. Surrogate imprinting strategies: Molecular imprints via fragments and dummies. ACS Appl. Polym. Mater., 2020, 2(9), 3714-3741. doi: 10.1021/acsapm.0c00555
- Kwaśniewska, K.; Gadzała-Kopciuch, R.; Buszewski, B. Magnetic molecular imprinted polymers as a tool for isolation and purification of biological samples. Open Chem., 2015, 13(1) doi: 10.1515/chem-2015-0137
- Xu, W.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Ni, R.; Meng, J.; Zhou, Y. Fabrication of magnetic polymers based on deep eutectic solvent for separation of bovine hemoglobin via molecular imprinting technology. Anal. Chim. Acta, 2019, 1048, 1-11. doi: 10.1016/j.aca.2018.10.044 PMID: 30598138
- Stevenson, D.; El-Sharif, H.F.; Reddy, S.M. Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers. Bioanalysis, 2016, 8(21), 2255-63.
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta, 2017, 960, 1-17. doi: 10.1016/j.aca.2017.01.003 PMID: 28193351
- Lahcen, A.A.; Amine, A. Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis, 2019, 31(2), 188-201. doi: 10.1002/elan.201800623
- Sun, B.; Ni, X.; Cao, Y.; Cao, G. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb. Biosens. Bioelectron., 2017, 91, 354-358. doi: 10.1016/j.bios.2016.12.056 PMID: 28049107
- He, J.Y.; Li, Q.Y.; Yang, L.L.; Ma, R.R.; Wang, C.Z.; Zhou, L.D.; Zhang, Q.H.; Xia, Z.N.; Yuan, C.S. Synergistic recognition of transferrin by using performance dual epitope imprinted polymers. Anal. Chim. Acta, 2021, 1186, 339117. doi: 10.1016/j.aca.2021.339117 PMID: 34756250
- Pan, Z.H.; Yu, S.S.; Bai, C.C.; Yin, W.Y.; Ma, Y.R.; Xue, Z.A.; Lu, Q.Y.; Dong, L.Y.; Wang, X.H. Poly(caffeic acid)-coated molecularly imprinted magnetic nanoparticles for specific and ultrasensitive detection of glycoprotein. Talanta, 2022, 241, 123240. doi: 10.1016/j.talanta.2022.123240 PMID: 35065346
- Turan, E.; Zengin, A.; Suludere, Z.; Kalkan, N.Ö.; Tamer, U. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy. Talanta, 2022, 237, 122926. doi: 10.1016/j.talanta.2021.122926 PMID: 34736663
- Zhang, J.; Hao, Y.; Tian, X.; Liang, Y.; He, X.; Gao, R.; Chen, L.; Zhang, Y. Multi-stimuli responsive molecularly imprinted nanoparticles with tailorable affinity for modulated specific recognition of human serum albumin. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(35), 6634-6643. doi: 10.1039/D2TB00076H PMID: 35257137
- Bie, Z.; Chen, Y. Selective analysis of interferon-alpha in human serum with boronate affinity oriented imprinting based plastic antibody. Talanta, 2021, 230, 122338. doi: 10.1016/j.talanta.2021.122338 PMID: 33934790
- Hao, Y.; Gao, Y.; Song, H.; Niu, Y.; Chen, X.; Liu, X.; Gao, R.; Wang, S. Fabrication of metal coordination-synergistic magnetic imprinted microspheres based on ligand-free Fe3O4Cu for specific recognition of bovine hemoglobin. Talanta, 2021, 233, 122496. doi: 10.1016/j.talanta.2021.122496 PMID: 34215114
- Guan, H.; Wang, J.; Tan, S.; Han, Q.; Liang, Q.; Ding, M. A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin. Korean J. Chem. Eng., 2020, 37(6), 1097-1106. doi: 10.1007/s11814-020-0532-3
- Goudarzi, F.; Hejazi, P. Effect of biomolecule chemical structure on the synthesis of surface magnetic molecularly imprinted polymer in aqueous solution using various monomers for high-capacity selective recognition of human insulin. React. Funct. Polym., 2019, 143, 104322. doi: 10.1016/j.reactfunctpolym.2019.104322
- Wang, Y.; Ma, Y.; Zhou, J.; Su, K.; Zhang, B.; Zhang, Q. Thermo-sensitive surface molecularly imprinted magnetic microspheres based on bio-macromolecules and their specific recognition of bovine serum albumin. J. Sep. Sci., 2020, 43(5), 996-1002. doi: 10.1002/jssc.201901024 PMID: 31837090
- Ashley, J.; Feng, X.; Halder, A.; Zhou, T.; Sun, Y. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies. Chem. Commun., 2018, 54(27), 3355-3358. doi: 10.1039/C8CC00343B PMID: 29542760
- Fan, J.P.; Yu, J.X.; Yang, X.M.; Zhang, X.H.; Yuan, T.T.; Peng, H.L. Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein. Chem. Eng. J., 2018, 337, 722-732. doi: 10.1016/j.cej.2017.12.159
- Zhai, J.; Zhao, M.; Cao, X.; Li, M.; Zhao, M. Metal-ion-responsive bionanocomposite for selective and reversible enzyme inhibition. J. Am. Chem. Soc., 2018, 140(49), 16925-16928. doi: 10.1021/jacs.8b10848 PMID: 30484642
- Mahajan, R.; Rouhi, M.; Shinde, S.; Bedwell, T.; Incel, A.; Mavliutova, L.; Piletsky, S.; Nicholls, I.A.; Sellergren, B. Highly efficient synthesis and assay of protein-imprinted nanogels by using magnetic templates. Angew. Chem. Int. Ed., 2019, 58(3), 727-730. doi: 10.1002/anie.201805772 PMID: 30308085
- Qian, L.; Sun, J.; Hou, C.; Yang, J.; Li, Y.; Lei, D.; Yang, M.; Zhang, S. Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta, 2017, 168, 174-182. doi: 10.1016/j.talanta.2017.03.044 PMID: 28391839
- Hao, Y.; Gao, R.; Liu, D.; He, G.; Tang, Y.; Guo, Z. A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity. Talanta, 2016, 153, 211-220. doi: 10.1016/j.talanta.2016.03.005 PMID: 27130111
- Ji, S.; Li, N.; Shen, Y.; Li, Q.; Qiao, J.; Li, Z. Poly(amino acid)-based thermoresponsive molecularly imprinted magnetic nanoparticles for specific recognition and release of lysozyme. Anal. Chim. Acta, 2016, 909, 60-66. doi: 10.1016/j.aca.2016.01.005 PMID: 26851085
- Riveros G, D.; Cordova, K.; Michiels, C.; Verachtert, H.; Derdelinckx, G. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta, 2016, 160, 761-767. doi: 10.1016/j.talanta.2016.08.024 PMID: 27591673
- Zhang, L.; Tang, Y.; Hao, Y.; He, G.; Zhang, B.; Gao, R.; Zhang, M. Preparation of magnetic glycoprotein-imprinted nanoparticles with dendritic polyethyleneimine as a monomer for the specific recognition of ovalbumin from egg white. J. Sep. Sci., 2016, 39(10), 1919-1925. doi: 10.1002/jssc.201600112 PMID: 26991459
- Gao, R.; Cui, X.; Hao, Y.; He, G.; Zhang, M.; Tang, Y. Preparation of Cu2+-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin. Talanta, 2016, 150, 46-53. doi: 10.1016/j.talanta.2015.12.017 PMID: 26838380
- Ma, R.T.; Ha, W.; Chen, J.; Shi, Y.P. Highly dispersed magnetic molecularly imprinted nanoparticles with well-defined thin film for the selective extraction of glycoprotein. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(15), 2620-2627. doi: 10.1039/C6TB00409A PMID: 32263286
- Chen, J.; Lei, S.; Xie, Y.; Wang, M.; Yang, J.; Ge, X. Fabrication of high-performance magnetic lysozyme-imprinted microsphere and its NIR-responsive controlled release property. ACS Appl. Mater. Interfaces, 2015, 7(51), 28606-28615. doi: 10.1021/acsami.5b10126 PMID: 26642106
- Taguchi, H.; Sunayama, H.; Takano, E.; Kitayama, Y.; Takeuchi, T. Preparation of molecularly imprinted polymers for the recognition of proteins via the generation of peptide-fragment binding sites by semi-covalent imprinting and enzymatic digestion. Analyst, 2015, 140(5), 1448-1452. doi: 10.1039/C4AN02299H PMID: 25629605
- Li, Y.; Wang, X.Y.; Zhang, R.Z.; Zhang, X.Y.; Liu, W.; Xu, X.M.; Zhang, Y.W. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles. J. Nanosci. Nanotechnol., 2014, 14(4), 2931-2936. doi: 10.1166/jnn.2014.8625 PMID: 24734713
- Lan, F.; Ma, S.; Yang, Q.; Xie, L.; Wu, Y.; Gu, Z. Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition. Colloids Surf. B Biointerfaces, 2014, 123, 213-218. doi: 10.1016/j.colsurfb.2014.09.018 PMID: 25288533
- Zhou, J.; Gan, N.; Li, T.; Hu, F.; Li, X.; Wang, L.; Zheng, L. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens. Bioelectron., 2014, 54, 199-206. doi: 10.1016/j.bios.2013.10.044 PMID: 24280050
- Sun, S.; Chen, L.; Shi, H.; Li, Y.; He, X. Magnetic glass carbon electrode, modified with magnetic ferriferrous oxide nanoparticles coated with molecularly imprinted polymer films for electrochemical determination of bovine hemoglobin. J. Electroanal. Chem., 2014, 734, 18-24. doi: 10.1016/j.jelechem.2014.09.034
- Cao, J.; Zhang, X.; He, X.; Chen, L.; Zhang, Y. The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment. Chem. Asian J., 2014, 9(2), 526-533. doi: 10.1002/asia.201300937 PMID: 24203562
- Li, X.; Zhang, B.; Li, W.; Lei, X.; Fan, X.; Tian, L.; Zhang, H.; Zhang, Q. Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosens. Bioelectron., 2014, 51, 261-267. doi: 10.1016/j.bios.2013.07.008 PMID: 23973936
- Jia, X.; Xu, M.; Wang, Y.; Ran, D.; Yang, S.; Zhang, M. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst, 2013, 138(2), 651-658. doi: 10.1039/C2AN36313E PMID: 23175702
- Ouyang, R.; Lei, J.; Ju, H. Artificial receptor-functionalized nanoshell: Facile preparation, fast separation and specific protein recognition. Nanotechnology, 2010, 21(18), 185502. doi: 10.1088/0957-4484/21/18/185502 PMID: 20388981
- Jing, T.; Du, H.; Dai, Q.; Xia, H.; Niu, J.; Hao, Q.; Mei, S.; Zhou, Y. Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosens. Bioelectron., 2010, 26(2), 301-306. doi: 10.1016/j.bios.2010.08.044 PMID: 20829022
- Li, L.; He, X.; Chen, L.; Zhang, Y. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin. Chem. Asian J., 2009, 4(2), 286-293. doi: 10.1002/asia.200800300 PMID: 19040251
补充文件
