Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres


如何引用文章

全文:

详细

The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.

作者简介

Jing Zhang

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Shujie Yuan

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Shujuan Beng

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Wenhui Luo

School of Pharmacy, Anhui University of Chinese Medicin

Email: info@benthamscience.net

Xiaoqun Wang

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Lei Wang

School of Pharmacy, Anhui University of Chinese Medicine

Email: info@benthamscience.net

Can Peng

School of Pharmacy, Anhui University of Chinese Medicine

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Egas, D.A.; Wirth, M.J. Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu. Rev. Anal. Chem., 2008, 1(1), 833-855. doi: 10.1146/annurev.anchem.1.031207.112912 PMID: 20636099
  2. Link, A.J.; Washburn, M.P. Analysis of protein composition using multidimensional chromatography and mass spectrometry. Curr. Protoc. Protein Sci., 2014, 78(1), 1.1-, 25. doi: 10.1002/0471140864.ps2301s78 PMID: 25367006
  3. Darrouzain, F.; Bian, S.; Desvignes, C.; Bris, C.; Watier, H.; Paintaud, G.; de Vries, A. Immunoassays for measuring serum concentrations of monoclonal antibodies and anti-biopharmaceutical antibodies in patients. Ther. Drug Monit., 2017, 39(4), 316-321. doi: 10.1097/FTD.0000000000000419 PMID: 28570370
  4. Cao, H.; Huang, Y.; Liu, Z. Interplay between binding affinity and kinetics in protein–protein interactions. Proteins, 2016, 84(7), 920-933. doi: 10.1002/prot.25041 PMID: 27018856
  5. Zhu, Z.; Lu, J.J.; Liu, S. Protein separation by capillary gel electrophoresis: A review. Anal. Chim. Acta, 2012, 709, 21-31. doi: 10.1016/j.aca.2011.10.022 PMID: 22122927
  6. Yu, L.; Sun, Y. Recent advances in protein chromatography with polymer-grafted media. J. Chromatogr. A.,, 2021, 1638, 461865. doi: 10.1016/j.chroma.2020.461865 PMID: 33453656
  7. Stastna, M. Continuous flow electrophoretic separation-recent developments and applications to biological sample analysis. Electrophoresis, 2020, 41(1-2), 36-55. doi: 10.1002/elps.201900288 PMID: 31650578
  8. Josic, D.; Kovac, S. Reversed-phase high performance liquid chromatography of proteins. Curr. Prot. Protein Sci., 2010, Chapter 8, 8.7.1-8.7.22. doi: 10.1002/0471140864.ps0807s61
  9. Armenta, J.M.; Gu, B.; Thulin, C.D.; Lee, M.L. Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G, preconcentration of low abundance proteins and separation by capillary zone electrophoresis. J. Chromatogr. A.,, 2007, 1148(1), 115-122. doi: 10.1016/j.chroma.2007.02.089 PMID: 17379232
  10. Wang, Y.; Xianyu, Y. Nanobody and nanozyme-enabled immunoassays with enhanced specificity and sensitivity. Small Methods, 2022, 6(4), 2101576. doi: 10.1002/smtd.202101576 PMID: 35266636
  11. Jahanban-Esfahlan, A.; Roufegarinejad, L.; Jahanban-Esfahlan, R.; Tabibiazar, M.; Amarowicz, R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, 207, 120317. doi: 10.1016/j.talanta.2019.120317 PMID: 31594596
  12. Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Analyt. Chem., 2019, 114, 202-217. doi: 10.1016/j.trac.2019.03.008
  13. Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev., 2018, 47(15), 5574-5587. doi: 10.1039/C7CS00854F PMID: 29876564
  14. Zhang, Q.; Li, Y.; Yang, Q.; Chen, H.; Chen, X.; Jiao, T.; Peng, Q. Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. J. Hazard. Mater., 2018, 342, 732-740. doi: 10.1016/j.jhazmat.2017.08.061 PMID: 28918291
  15. Zhu, X.; Li, H.; Liu, H.; Peng, W.; Zhong, S.; Wang, Y. Halloysite-based dopamine-imprinted polymer for selective protein capture. J. Sep. Sci., 2016, 39(12), 2431-2437. doi: 10.1002/jssc.201600168 PMID: 27121654
  16. Yin, Y.; Yan, L.; Zhang, Z.; Wang, J.; Luo, N. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. J. Sep. Sci., 2016, 39(8), 1480-1488. doi: 10.1002/jssc.201600026 PMID: 26989004
  17. Yan, L.; Wang, J.; Lv, P.; Xie, D.; Zhang, Z. A facile synthesis of novel three-dimensional magnetic imprinted polymers for rapid extraction of bovine serum albumin in bovine calf serum. Anal. Bioanal. Chem., 2017, 409(13), 3453-3463. doi: 10.1007/s00216-017-0283-0 PMID: 28341987
  18. Çakir, P.; Cutivet, A.; Resmini, M.; Bui, B.T.S.; Haupt, K. Protein-size molecularly imprinted polymer nanogels as synthetic antibodies, by localized polymerization with multi-initiators. Adv. Mater., 2013, 25(7), 1048-1051. doi: 10.1002/adma.201203400 PMID: 23135892
  19. Tamahkar, E.; Kutsal, T.; Denizli, A. Surface imprinted bacterial cellulose nanofibers for cytochrome c purification. Process Biochem., 2015, 50(12), 2289-2297. doi: 10.1016/j.procbio.2015.09.026
  20. Chen, F.; Zhao, W.; Zhang, J.; Kong, J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys. Chem. Chem. Phys., 2016, 18(2), 718-725. doi: 10.1039/C5CP04218F PMID: 26388494
  21. Zhang, N.; Zhang, N.; Xu, Y.; Li, Z.; Yan, C.; Mei, K.; Ding, M.; Ding, S.; Guan, P.; Qian, L.; Du, C.; Hu, X. Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun., 2019, 40(17), 1900096. doi: 10.1002/marc.201900096 PMID: 31111979
  22. Boitard, C.; Bée, A.; Ménager, C.; Griffete, N. Magnetic protein imprinted polymers: A review. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(11), 1563-1580. doi: 10.1039/C7TB02985C PMID: 32254273
  23. Abe, H.; Naka, T.; Sato, K.; Suzuki, Y.; Nakano, M. Shape-controlled syntheses of magnetite microparticles and their magnetorheology. Int. J. Mol. Sci., 2019, 20(15), 3617. doi: 10.3390/ijms20153617 PMID: 31344866
  24. Wu, W.; Jiang, C.Z.; Roy, V.A.L. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, 8(47), 19421-19474. doi: 10.1039/C6NR07542H PMID: 27812592
  25. Zoppellaro, G. Iron Oxide Magnetic Nanoparticles (NPs) tailored for biomedical applications. In: Magnetic Nanoheterostructures; , 2020; pp. 57-102.
  26. Gao, R.; Mu, X.; Hao, Y.; Zhang, L.; Zhang, J.; Tang, Y. Combination of surface imprinting and immobilized template techniques for preparation of core–shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(12), 1733-1741. doi: 10.1039/C3TB21684E PMID: 32261403
  27. Gao, R.; Hao, Y.; Zhang, L.; Cui, X.; Liu, D.; Zhang, M.; Tang, Y.; Zheng, Y. A facile method for protein imprinting on directly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy. Chem. Eng. J., 2016, 284, 139-148. doi: 10.1016/j.cej.2015.08.123
  28. Hao, Y.; Gao, R.; Liu, D.; Zhang, B.; Tang, Y.; Guo, Z. Preparation of biocompatible molecularly imprinted shell on superparamagnetic iron oxide nanoparticles for selective depletion of bovine hemoglobin in biological sample. J. Colloid Interface Sci., 2016, 470, 100-107. doi: 10.1016/j.jcis.2016.02.051 PMID: 26939073
  29. Lin, M.; Huang, H.; Liu, Z.; Liu, Y.; Ge, J.; Fang, Y. Growth-dissolution-regrowth transitions of Fe33O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir, 2013, 29(49), 15433-15441. doi: 10.1021/la403577y PMID: 24256401
  30. Xuan, S.; Wang, Y.X.J.; Yu, J.C.; Cham-Fai Leung, K. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater., 2009, 21(21), 5079-5087. doi: 10.1021/cm901618m
  31. Li, Y.; Wang, Z.; Ali, Z.; Tian, K.; Xu, J.; Li, W.; Hou, Y. Monodisperse Fe3O4 spheres: Large-scale controlled synthesis in the absence of surfactants and chemical kinetic process. Sci. China Mater., 2019, 62(10), 1488-1495. doi: 10.1007/s40843-019-9466-x
  32. Gao, R.; Hao, Y.; Cui, X.; Zhang, L.; Liu, D.; Tang, Y. One-step synthesis of aldehyde-functionalized magnetic nanoparticles as adsorbent for fast and effective adsorption of proteins. J. Alloys Compd., 2015, 637, 461-465. doi: 10.1016/j.jallcom.2015.03.037
  33. Zhu, W.; Ma, W.; Li, C.; Pan, J.; Dai, X. Well-designed multihollow magnetic imprinted microspheres based on cellulose nanocrystals (CNCs) stabilized Pickering double emulsion polymerization for selective adsorption of bifenthrin. Chem. Eng. J., 2015, 276, 249-260. doi: 10.1016/j.cej.2015.04.084
  34. Liu, Y.; Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review. Mikrochim. Acta, 2016, 183(1), 1-19. doi: 10.1007/s00604-015-1623-4
  35. Jiang, L.; Lu, R.; Ye, L. Towards detection of glycoproteins using molecularly imprinted nanoparticles and boronic acid-modified fluorescent probe. Polymers, 2019, 11(1), 173. doi: 10.3390/polym11010173 PMID: 30960157
  36. Chen, F.; Mao, M.; Wang, J.; Liu, J.; Li, F. A dual-step immobilization/imprinting approach to prepare magnetic molecular imprinted polymers for selective removal of human serum albumin. Talanta, 2020, 209, 120509. doi: 10.1016/j.talanta.2019.120509 PMID: 31891993
  37. Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable–oriented surface imprinting. Nat. Protoc., 2017, 12(5), 964-987. doi: 10.1038/nprot.2017.015 PMID: 28384137
  38. Stephenson-Brown, A.; Acton, A.L.; Preece, J.A.; Fossey, J.S.; Mendes, P.M. Selective glycoprotein detection through covalent templating and allosteric click-imprinting. Chem. Sci., 2015, 6(9), 5114-5119. doi: 10.1039/C5SC02031J PMID: 29142730
  39. Ding, X.; Li, G.; Xiao, C.; Chen, X. Enhancing the stability of hydrogels by doubling the schiff base linkages. Macromol. Chem. Phys., 2018, 220.
  40. Baggiani, C.; Giovannoli, C.; Anfossi, L.; Passini, C.; Baravalle, P.; Giraudi, G. A connection between the binding properties of imprinted and nonimprinted polymers: A change of perspective in molecular imprinting. J. Am. Chem. Soc., 2012, 134(3), 1513-1518. doi: 10.1021/ja205632t PMID: 22188653
  41. Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev., 2016, 45(8), 2137-2211. doi: 10.1039/C6CS00061D PMID: 26936282
  42. Wang, X.; Wang, L.; He, X.; Zhang, Y.; Chen, L. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 2009, 78(2), 327-332. doi: 10.1016/j.talanta.2008.11.024 PMID: 19203590
  43. Zaidi, S.A. Molecular imprinting polymers and their composites: A promising material for diverse applications. Biomater. Sci., 2017, 5(3), 388-402. doi: 10.1039/C6BM00765A PMID: 28138673
  44. Bossi, A.; Bonini, F.; Turner, A.P.F.; Piletsky, S.A. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron., 2007, 22(6), 1131-1137. doi: 10.1016/j.bios.2006.06.023 PMID: 16891110
  45. Lu, S.; Cheng, G.; Pang, X. Protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility. II. Characteristics. J. Appl. Polym. Sci., 2006, 99(5), 2401-2407. doi: 10.1002/app.22812
  46. Wang, Y.; Chai, Z.; Sun, Y.; Gao, M.; Fu, G. Preparation of lysozyme imprinted magnetic nanoparticles via surface graft copolymerization. J. Biomater. Sci. Polym. Ed., 2015, 26(11), 644-656. doi: 10.1080/09205063.2015.1053215 PMID: 26073534
  47. Zhou, J.; Wang, Y.; Ma, Y.; Zhang, B.; Zhang, Q. Surface molecularly imprinted thermo-sensitive polymers based on light-weight hollow magnetic microspheres for specific recognition of BSA. Appl. Surf. Sci., 2019, 486, 265-273. doi: 10.1016/j.apsusc.2019.04.159
  48. Guo, H.; Yuan, D.; Fu, G. Enhanced surface imprinting of lysozyme over a new kind of magnetic chitosan submicrospheres. J. Colloid Interface Sci., 2015, 440, 53-59. doi: 10.1016/j.jcis.2014.10.059 PMID: 25460689
  49. Xie, J.; Zhong, G.; Cai, C.; Chen, C.; Chen, X. Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere. Talanta, 2017, 169, 98-103. doi: 10.1016/j.talanta.2017.03.065 PMID: 28411829
  50. Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed., 2019, 58(3), 696-714. doi: 10.1002/anie.201801063 PMID: 29573319
  51. Chen, W.; Fu, M.; Zhu, X.; Liu, Q. Protein recognition by polydopamine-based molecularly imprinted hollow spheres. Biosens. Bioelectron., 2019, 142, 111492. doi: 10.1016/j.bios.2019.111492 PMID: 31299590
  52. Ding, S.; Lyu, Z.; Niu, X.; Zhou, Y.; Liu, D.; Falahati, M.; Du, D.; Lin, Y. Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosens. Bioelectron., 2020, 149, 111830. doi: 10.1016/j.bios.2019.111830 PMID: 31710919
  53. Wei, X.; Wang, Y.; Chen, J.; Ni, R.; Meng, J.; Liu, Z.; Xu, F.; Zhou, Y. Ionic liquids skeleton typed magnetic core-shell molecularly imprinted polymers for the specific recognition of lysozyme. Anal. Chim. Acta, 2019, 1081, 81-92. doi: 10.1016/j.aca.2019.07.025 PMID: 31446968
  54. Xu, K.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Zhou, Y. Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Mikrochim. Acta, 2018, 185(2), 146. doi: 10.1007/s00604-018-2707-8 PMID: 29594602
  55. Liu, Y.; Wang, Y.; Dai, Q.; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal. Chim. Acta, 2016, 936, 168-178. doi: 10.1016/j.aca.2016.07.003 PMID: 27566352
  56. Liu, Z.; Wang, Y.; Xu, F.; Wei, X.; Chen, J.; Li, H.; He, X.; Zhou, Y. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal. Chim. Acta, 2020, 1129, 49-59. doi: 10.1016/j.aca.2020.06.052 PMID: 32891390
  57. Wang, P.; Yin, Y.; Xu, J.; Chen, S.; Wang, H. Facile synthesis of Cu2+-immobilized imprinted cotton for the selective adsorption of bovine hemoglobin. Cellulose, 2020, 27(2), 867-877. doi: 10.1007/s10570-019-02816-z
  58. Tao, Q.L.; Li, Y.; Shi, Y.; Liu, R.J.; Zhang, Y.W.; Guo, J. Application of molecular imprinted magnetic Fe3O4@SiO2 nanoparticles for selective immobilization of cellulase. J. Nanosci. Nanotechnol., 2016, 16(6), 6055-6060. doi: 10.1166/jnn.2016.10853 PMID: 27427671
  59. Kuhn, J.; Aylaz, G.; Sari, E.; Marco, M.; Yiu, H.H.P.; Duman, M. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles. J. Hazard. Mater., 2020, 387, 121709. doi: 10.1016/j.jhazmat.2019.121709 PMID: 31812475
  60. Chang, T.; Liu, Y.; Yan, X.; Liu, S.; Zheng, H. One-pot synthesis of uniform and monodisperse superparamagnetic molecularly imprinted polymer nanospheres through a sol–gel process for selective recognition of bisphenol A in aqueous media. RSC Advances, 2016, 6(70), 66297-66306. doi: 10.1039/C6RA10740K
  61. Wan, W.; Han, Q.; Zhang, X.; Xie, Y.; Sun, J.; Ding, M. Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting. Chem. Commun., 2015, 51(17), 3541-3544. doi: 10.1039/C4CC10205C PMID: 25644218
  62. Zhang, M.; Zhang, X.; He, X.; Chen, L.; Zhang, Y. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale, 2012, 4(10), 3141-3147. doi: 10.1039/c2nr30316g PMID: 22535306
  63. Kan, X.; Zhao, Q.; Shao, D.; Geng, Z.; Wang, Z.; Zhu, J.J. Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. J. Phys. Chem. B, 2010, 114(11), 3999-4004. doi: 10.1021/jp910060c PMID: 20184298
  64. Xu, J.; Medina-Rangel, P.X.; Haupt, K.; Tse Sum Bui, B. Guide to the preparation of molecularly imprinted polymer nanoparticles for protein recognition by solid-phase synthesis. Methods Enzymol., 2017, 590, 115-141. doi: 10.1016/bs.mie.2017.02.004 PMID: 28411635
  65. Bie, Z.; Chen, Y.; Ye, J.; Wang, S.; Liu, Z. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew. Chem. Int. Ed., 2015, 54(35), 10211-10215. doi: 10.1002/anie.201503066 PMID: 26179149
  66. Li, D.; Tu, T.; Yang, M.; Xu, C. Efficient preparation of surface imprinted magnetic nanoparticles using poly (2-anilinoethanol) as imprinting coating for the selective recognition of glycoprotein. Talanta, 2018, 184, 316-324. doi: 10.1016/j.talanta.2018.03.012 PMID: 29674048
  67. Chen, G.; Shu, H.; Wang, L.; Bashir, K.; Wang, Q.; Cui, X.; Li, X.; Luo, Z.; Chang, C.; Fu, Q. Facile one-step targeted immobilization of an enzyme based on silane emulsion self-assembled molecularly imprinted polymers for visual sensors. Analyst, 2020, 145(1), 268-276. doi: 10.1039/C9AN01777A PMID: 31746832
  68. Liu, Z.; He, H. Synthesis and applications of boronate affinity materials: From class selectivity to biomimetic specificity. Acc. Chem. Res., 2017, 50(9), 2185-2193. doi: 10.1021/acs.accounts.7b00179 PMID: 28849912
  69. Zhu, H.; Yao, H.; Xia, K.; Liu, J.; Yin, X.; Zhang, W.; Pan, J. Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH. Chem. Eng. J., 2018, 346, 317-328. doi: 10.1016/j.cej.2018.03.170
  70. Sun, X.Y.; Ma, R.T.; Chen, J.; Shi, Y.P. Magnetic boronate modified molecularly imprinted polymers on magnetite microspheres modified with porous TiO2 (Fe3O4@pTiO2@MIP) with enhanced adsorption capacity for glycoproteins and with wide operational pH range. Mikrochim. Acta, 2018, 185(12), 565. doi: 10.1007/s00604-018-3092-z PMID: 30498865
  71. Kartal, F.; Denizli, A. Surface molecularly imprinted magnetic microspheres for the recognition of albumin. J. Sep. Sci., 2014, 37(15), 2077-2086. doi: 10.1002/jssc.201400086 PMID: 24825245
  72. Chen, H.; Kong, J.; Yuan, D.; Fu, G. Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Biosens. Bioelectron., 2014, 53, 5-11. doi: 10.1016/j.bios.2013.09.037 PMID: 24099918
  73. Gao, R.; Zhang, L.; Hao, Y.; Cui, X.; Liu, D.; Zhang, M.; Tang, Y. One-step preparation of magnetic imprinted nanoparticles adopting dopamine-cupric ion as a co-monomer for the specific recognition of bovine hemoglobin. J. Sep. Sci., 2015, 38(20), 3568-3574. doi: 10.1002/jssc.201500677 PMID: 26332617
  74. Shi, L.; Tang, Y.; Hao, Y.; He, G.; Gao, R.; Tang, X. Selective adsorption of protein by a high-efficiency Cu2+ -cooperated magnetic imprinted nanomaterial. J. Sep. Sci., 2016, 39(14), 2876-2883. doi: 10.1002/jssc.201600413 PMID: 27234958
  75. Zhao, M.; Huang, S.; Xie, H.; Wang, J.; Zhao, X.; Li, M.; Zhao, M. Construction of specific and reversible nanoreceptors for proteins via sequential surface-imprinting strategy. Anal. Chem., 2020, 92(15), 10540-10547. doi: 10.1021/acs.analchem.0c01366 PMID: 32605364
  76. Zhou, J.; Wang, Y.; Bu, J.; Zhang, B.; Zhang, Q Ni2+-BSA directional coordination-assisted magnetic molecularly imprinted microspheres with enhanced specific rebinding to target proteins. ACS Appl. Mater. Interfaces, 2019, 11(29), 25682-25690. doi: 10.1021/acsami.9b06507 PMID: 31246393
  77. Gai, Q.Q.; Qu, F.; Zhang, T.; Zhang, Y.K. The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation. J. Chromatogr. A, 2011, 1218(22), 3489-3495. doi: 10.1016/j.chroma.2011.03.069 PMID: 21511265
  78. Verheyen, E.; Schillemans, J.P.; van Wijk, M.; Demeniex, M.A.; Hennink, W.E.; van Nostrum, C.F. Challenges for the effective molecular imprinting of proteins. Biomaterials, 2011, 32(11), 3008-3020. doi: 10.1016/j.biomaterials.2011.01.007 PMID: 21288565
  79. Zhang, Z.; Wang, H.; Wang, H.; Wu, C.; Li, M.; Li, L. Fabrication and evaluation of molecularly imprinted magnetic nanoparticles for selective recognition and magnetic separation of lysozyme in human urine. Analyst, 2018, 143(23), 5849-5856. doi: 10.1039/C8AN01746H PMID: 30382260
  80. Liu, Y.; Wang, S.; Zhang, C.; Su, X.; Huang, S.; Zhao, M. Enhancing the selectivity of enzyme detection by using tailor-made nanoparticles. Anal. Chem., 2013, 85(10), 4853-4857. doi: 10.1021/ac4007914 PMID: 23654199
  81. Men, H.F.; Liu, H.Q.; Zhang, Z.L.; Huang, J.; Zhang, J.; Zhai, Y.Y.; Li, L. Synthesis, properties and application research of atrazine Fe3O4@SiO2 magnetic molecularly imprinted polymer. Environ. Sci. Pollut. Res. Int., 2012, 19(6), 2271-2280. doi: 10.1007/s11356-011-0732-9 PMID: 22246642
  82. Li, W.; Chen, M.; Xiong, H.; Wen, W.; He, H.; Zhang, X.; Wang, S. Surface protein imprinted magnetic nanoparticles for specific recognition of bovine hemoglobin. New J. Chem., 2016, 40(1), 564-570. doi: 10.1039/C5NJ02879E
  83. Su, Y.; Qiu, B.; Chang, C.; Li, X.; Zhang, M.; Zhou, B.; Yang, Y. Separation of bovine hemoglobin using novel magnetic molecular imprinted nanoparticles. RSC Advances, 2018, 8(11), 6192-6199. doi: 10.1039/C7RA12457K PMID: 35539629
  84. Liu, Y.; Gu, Y.; Li, M.; Wei, Y. Protein imprinting over magnetic nanospheres via a surface grafted polymer for specific capture of hemoglobin. New J. Chem., 2014, 38(12), 6064-6072. doi: 10.1039/C4NJ01262C
  85. Cheng, Y.; Nie, J.; Li, J.; Liu, H.; Yan, Z.; Kuang, L. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chem., 2019, 287, 100-106. doi: 10.1016/j.foodchem.2019.02.069 PMID: 30857677
  86. Li, Y.; Hong, M.; Miaomiao; Bin, Q.; Lin, Z.; Cai, Z.; Chen, G. Novel composites of multifunctional Fe3O4@Au nanofibers for highly efficient glycoprotein imprinting. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(7), 1044-1051. doi: 10.1039/c2tb00149g PMID: 32262368
  87. Liu, Z.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S. Core-shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustain. Chem.& Eng., 2019.
  88. Li, Y.; Chen, Y.; Huang, L.; Lou, B.; Chen, G. Creating BHb-imprinted magnetic nanoparticles with multiple binding sites. Analyst, 2017, 142(2), 302-309. doi: 10.1039/C6AN02121B PMID: 27924985
  89. Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Mikrochim. Acta, 2016, 183(10), 2677-2695. doi: 10.1007/s00604-016-1930-4
  90. Li, Y.; Huang, L.; Wang, X.; Chen, Y. A study of electrochemical sensor based on BHb-imprinted magnetic nanoparticles. Anal. Sci., 2017, 33(10), 1105-1110. doi: 10.2116/analsci.33.1105 PMID: 28993582
  91. Ma, W.; Dai, Y.; Row, K.H. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophoresis, 2018, 39(15), 2039-2046. doi: 10.1002/elps.201800034 PMID: 29450897
  92. Yuan, B.; Yang, X.; Xue, L.; Feng, Y.; Jiang, J. A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: Synergistic recovery of anthocyanin from fruit and vegetable waste. Bioresour. Technol., 2016, 222, 14-23. doi: 10.1016/j.biortech.2016.09.088 PMID: 27697733
  93. Zhang, W.; Zhu, Z.; Zhang, H.; Qiu, Y. Selective removal of the genotoxic compound 2-aminopyridine in water using molecularly imprinted polymers based on magnetic chitosan and β-cyclodextrin. Int. J. Environ. Res. Public Health, 2017, 14(9), 991. doi: 10.3390/ijerph14090991 PMID: 28858259
  94. Lv, Y.; Tan, T.; Svec, F. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol. Adv., 2013, 31(8), 1172-1186. doi: 10.1016/j.biotechadv.2013.02.005 PMID: 23466364
  95. Yang, S.; Zhang, X.; Zhao, W.; Sun, L.; Luo, A. Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation. J. Mater. Sci., 2015, 51, 937-949.
  96. Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 2019, 195, 390-400. doi: 10.1016/j.talanta.2018.11.065 PMID: 30625559
  97. Lee, M.H.; Ahluwalia, A.; Hsu, K.M.; Chin, W.T.; Lin, H.Y. Extraction of alpha-fetoprotein (AFP) with magnetic albuminoid-imprinted poly(ethylene-co-vinyl alcohol) nanoparticles from human hepatocellular carcinoma HepG2 cellular culture medium. RSC Advances, 2014, 4(70), 36990-36995. doi: 10.1039/C4RA07378A
  98. Fresco-Cala, B.; Mizaikoff, B. Surrogate imprinting strategies: Molecular imprints via fragments and dummies. ACS Appl. Polym. Mater., 2020, 2(9), 3714-3741. doi: 10.1021/acsapm.0c00555
  99. Kwaśniewska, K.; Gadzała-Kopciuch, R.; Buszewski, B. Magnetic molecular imprinted polymers as a tool for isolation and purification of biological samples. Open Chem., 2015, 13(1) doi: 10.1515/chem-2015-0137
  100. Xu, W.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Ni, R.; Meng, J.; Zhou, Y. Fabrication of magnetic polymers based on deep eutectic solvent for separation of bovine hemoglobin via molecular imprinting technology. Anal. Chim. Acta, 2019, 1048, 1-11. doi: 10.1016/j.aca.2018.10.044 PMID: 30598138
  101. Stevenson, D.; El-Sharif, H.F.; Reddy, S.M. Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers. Bioanalysis, 2016, 8(21), 2255-63.
  102. Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta, 2017, 960, 1-17. doi: 10.1016/j.aca.2017.01.003 PMID: 28193351
  103. Lahcen, A.A.; Amine, A. Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis, 2019, 31(2), 188-201. doi: 10.1002/elan.201800623
  104. Sun, B.; Ni, X.; Cao, Y.; Cao, G. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb. Biosens. Bioelectron., 2017, 91, 354-358. doi: 10.1016/j.bios.2016.12.056 PMID: 28049107
  105. He, J.Y.; Li, Q.Y.; Yang, L.L.; Ma, R.R.; Wang, C.Z.; Zhou, L.D.; Zhang, Q.H.; Xia, Z.N.; Yuan, C.S. Synergistic recognition of transferrin by using performance dual epitope imprinted polymers. Anal. Chim. Acta, 2021, 1186, 339117. doi: 10.1016/j.aca.2021.339117 PMID: 34756250
  106. Pan, Z.H.; Yu, S.S.; Bai, C.C.; Yin, W.Y.; Ma, Y.R.; Xue, Z.A.; Lu, Q.Y.; Dong, L.Y.; Wang, X.H. Poly(caffeic acid)-coated molecularly imprinted magnetic nanoparticles for specific and ultrasensitive detection of glycoprotein. Talanta, 2022, 241, 123240. doi: 10.1016/j.talanta.2022.123240 PMID: 35065346
  107. Turan, E.; Zengin, A.; Suludere, Z.; Kalkan, N.Ö.; Tamer, U. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy. Talanta, 2022, 237, 122926. doi: 10.1016/j.talanta.2021.122926 PMID: 34736663
  108. Zhang, J.; Hao, Y.; Tian, X.; Liang, Y.; He, X.; Gao, R.; Chen, L.; Zhang, Y. Multi-stimuli responsive molecularly imprinted nanoparticles with tailorable affinity for modulated specific recognition of human serum albumin. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(35), 6634-6643. doi: 10.1039/D2TB00076H PMID: 35257137
  109. Bie, Z.; Chen, Y. Selective analysis of interferon-alpha in human serum with boronate affinity oriented imprinting based plastic antibody. Talanta, 2021, 230, 122338. doi: 10.1016/j.talanta.2021.122338 PMID: 33934790
  110. Hao, Y.; Gao, Y.; Song, H.; Niu, Y.; Chen, X.; Liu, X.; Gao, R.; Wang, S. Fabrication of metal coordination-synergistic magnetic imprinted microspheres based on ligand-free Fe3O4–Cu for specific recognition of bovine hemoglobin. Talanta, 2021, 233, 122496. doi: 10.1016/j.talanta.2021.122496 PMID: 34215114
  111. Guan, H.; Wang, J.; Tan, S.; Han, Q.; Liang, Q.; Ding, M. A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin. Korean J. Chem. Eng., 2020, 37(6), 1097-1106. doi: 10.1007/s11814-020-0532-3
  112. Goudarzi, F.; Hejazi, P. Effect of biomolecule chemical structure on the synthesis of surface magnetic molecularly imprinted polymer in aqueous solution using various monomers for high-capacity selective recognition of human insulin. React. Funct. Polym., 2019, 143, 104322. doi: 10.1016/j.reactfunctpolym.2019.104322
  113. Wang, Y.; Ma, Y.; Zhou, J.; Su, K.; Zhang, B.; Zhang, Q. Thermo-sensitive surface molecularly imprinted magnetic microspheres based on bio-macromolecules and their specific recognition of bovine serum albumin. J. Sep. Sci., 2020, 43(5), 996-1002. doi: 10.1002/jssc.201901024 PMID: 31837090
  114. Ashley, J.; Feng, X.; Halder, A.; Zhou, T.; Sun, Y. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies. Chem. Commun., 2018, 54(27), 3355-3358. doi: 10.1039/C8CC00343B PMID: 29542760
  115. Fan, J.P.; Yu, J.X.; Yang, X.M.; Zhang, X.H.; Yuan, T.T.; Peng, H.L. Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein. Chem. Eng. J., 2018, 337, 722-732. doi: 10.1016/j.cej.2017.12.159
  116. Zhai, J.; Zhao, M.; Cao, X.; Li, M.; Zhao, M. Metal-ion-responsive bionanocomposite for selective and reversible enzyme inhibition. J. Am. Chem. Soc., 2018, 140(49), 16925-16928. doi: 10.1021/jacs.8b10848 PMID: 30484642
  117. Mahajan, R.; Rouhi, M.; Shinde, S.; Bedwell, T.; Incel, A.; Mavliutova, L.; Piletsky, S.; Nicholls, I.A.; Sellergren, B. Highly efficient synthesis and assay of protein-imprinted nanogels by using magnetic templates. Angew. Chem. Int. Ed., 2019, 58(3), 727-730. doi: 10.1002/anie.201805772 PMID: 30308085
  118. Qian, L.; Sun, J.; Hou, C.; Yang, J.; Li, Y.; Lei, D.; Yang, M.; Zhang, S. Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta, 2017, 168, 174-182. doi: 10.1016/j.talanta.2017.03.044 PMID: 28391839
  119. Hao, Y.; Gao, R.; Liu, D.; He, G.; Tang, Y.; Guo, Z. A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity. Talanta, 2016, 153, 211-220. doi: 10.1016/j.talanta.2016.03.005 PMID: 27130111
  120. Ji, S.; Li, N.; Shen, Y.; Li, Q.; Qiao, J.; Li, Z. Poly(amino acid)-based thermoresponsive molecularly imprinted magnetic nanoparticles for specific recognition and release of lysozyme. Anal. Chim. Acta, 2016, 909, 60-66. doi: 10.1016/j.aca.2016.01.005 PMID: 26851085
  121. Riveros G, D.; Cordova, K.; Michiels, C.; Verachtert, H.; Derdelinckx, G. Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta, 2016, 160, 761-767. doi: 10.1016/j.talanta.2016.08.024 PMID: 27591673
  122. Zhang, L.; Tang, Y.; Hao, Y.; He, G.; Zhang, B.; Gao, R.; Zhang, M. Preparation of magnetic glycoprotein-imprinted nanoparticles with dendritic polyethyleneimine as a monomer for the specific recognition of ovalbumin from egg white. J. Sep. Sci., 2016, 39(10), 1919-1925. doi: 10.1002/jssc.201600112 PMID: 26991459
  123. Gao, R.; Cui, X.; Hao, Y.; He, G.; Zhang, M.; Tang, Y. Preparation of Cu2+-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin. Talanta, 2016, 150, 46-53. doi: 10.1016/j.talanta.2015.12.017 PMID: 26838380
  124. Ma, R.T.; Ha, W.; Chen, J.; Shi, Y.P. Highly dispersed magnetic molecularly imprinted nanoparticles with well-defined thin film for the selective extraction of glycoprotein. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(15), 2620-2627. doi: 10.1039/C6TB00409A PMID: 32263286
  125. Chen, J.; Lei, S.; Xie, Y.; Wang, M.; Yang, J.; Ge, X. Fabrication of high-performance magnetic lysozyme-imprinted microsphere and its NIR-responsive controlled release property. ACS Appl. Mater. Interfaces, 2015, 7(51), 28606-28615. doi: 10.1021/acsami.5b10126 PMID: 26642106
  126. Taguchi, H.; Sunayama, H.; Takano, E.; Kitayama, Y.; Takeuchi, T. Preparation of molecularly imprinted polymers for the recognition of proteins via the generation of peptide-fragment binding sites by semi-covalent imprinting and enzymatic digestion. Analyst, 2015, 140(5), 1448-1452. doi: 10.1039/C4AN02299H PMID: 25629605
  127. Li, Y.; Wang, X.Y.; Zhang, R.Z.; Zhang, X.Y.; Liu, W.; Xu, X.M.; Zhang, Y.W. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles. J. Nanosci. Nanotechnol., 2014, 14(4), 2931-2936. doi: 10.1166/jnn.2014.8625 PMID: 24734713
  128. Lan, F.; Ma, S.; Yang, Q.; Xie, L.; Wu, Y.; Gu, Z. Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition. Colloids Surf. B Biointerfaces, 2014, 123, 213-218. doi: 10.1016/j.colsurfb.2014.09.018 PMID: 25288533
  129. Zhou, J.; Gan, N.; Li, T.; Hu, F.; Li, X.; Wang, L.; Zheng, L. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens. Bioelectron., 2014, 54, 199-206. doi: 10.1016/j.bios.2013.10.044 PMID: 24280050
  130. Sun, S.; Chen, L.; Shi, H.; Li, Y.; He, X. Magnetic glass carbon electrode, modified with magnetic ferriferrous oxide nanoparticles coated with molecularly imprinted polymer films for electrochemical determination of bovine hemoglobin. J. Electroanal. Chem., 2014, 734, 18-24. doi: 10.1016/j.jelechem.2014.09.034
  131. Cao, J.; Zhang, X.; He, X.; Chen, L.; Zhang, Y. The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment. Chem. Asian J., 2014, 9(2), 526-533. doi: 10.1002/asia.201300937 PMID: 24203562
  132. Li, X.; Zhang, B.; Li, W.; Lei, X.; Fan, X.; Tian, L.; Zhang, H.; Zhang, Q. Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosens. Bioelectron., 2014, 51, 261-267. doi: 10.1016/j.bios.2013.07.008 PMID: 23973936
  133. Jia, X.; Xu, M.; Wang, Y.; Ran, D.; Yang, S.; Zhang, M. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst, 2013, 138(2), 651-658. doi: 10.1039/C2AN36313E PMID: 23175702
  134. Ouyang, R.; Lei, J.; Ju, H. Artificial receptor-functionalized nanoshell: Facile preparation, fast separation and specific protein recognition. Nanotechnology, 2010, 21(18), 185502. doi: 10.1088/0957-4484/21/18/185502 PMID: 20388981
  135. Jing, T.; Du, H.; Dai, Q.; Xia, H.; Niu, J.; Hao, Q.; Mei, S.; Zhou, Y. Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosens. Bioelectron., 2010, 26(2), 301-306. doi: 10.1016/j.bios.2010.08.044 PMID: 20829022
  136. Li, L.; He, X.; Chen, L.; Zhang, Y. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin. Chem. Asian J., 2009, 4(2), 286-293. doi: 10.1002/asia.200800300 PMID: 19040251

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024