An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides
- Авторлар: Sivaraman S.1, Sabareesh V.1
-
Мекемелер:
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT
- Шығарылым: Том 25, № 4 (2024)
- Беттер: 267-285
- Бөлім: Life Sciences
- URL: https://rjsvd.com/1389-2037/article/view/645600
- DOI: https://doi.org/10.2174/0113892037287976231212104607
- ID: 645600
Дәйексөз келтіру
Толық мәтін
Аннотация
Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α-glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, peptides can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.
Негізгі сөздер
Авторлар туралы
Sachithanantham Sivaraman
Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT
Email: info@benthamscience.net
Varatharajan Sabareesh
Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Green, B.D.; Flatt, P.R.; Bailey, C.J. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab. Vasc. Dis. Res., 2006, 3(3), 159-165. doi: 10.3132/dvdr.2006.024 PMID: 17160910
- Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front. Pharmacol., 2022, 12, 807548. doi: 10.3389/fphar.2021.807548 PMID: 35126141
- LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev., 2021, 42(1), 77-96. doi: 10.1210/endrev/bnaa023 PMID: 32897388
- Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; Jurczak, M.J.; Camporez, J.P.; Lee, H.Y.; Cline, G.W.; Samuel, V.T.; Kibbey, R.G.; Shulman, G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510(7506), 542-546. doi: 10.1038/nature13270 PMID: 24847880
- Triggle, C.R.; Mohammed, I.; Bshesh, K.; Marei, I.; Ye, K.; Ding, H.; MacDonald, R.; Hollenberg, M.D.; Hill, M.A. Metformin: Is it a drug for all reasons and diseases? Metabolism, 2022, 133, 155223. doi: 10.1016/j.metabol.2022.155223 PMID: 35640743
- Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr. Diabetes Rev., 2020, 16(2), 117-136. doi: 10.2174/18756417OTg5lMTI0TcVY PMID: 31237215
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol., 2020, 145, 111738. doi: 10.1016/j.fct.2020.111738 PMID: 32916220
- Deng, X.; Tavallaie, M.S.; Sun, R.; Wang, J.; Cai, Q.; Shen, J.; Lei, S.; Fu, L.; Jiang, F. Drug discovery approaches targeting the incretin pathway. Bioorg. Chem., 2020, 99, 103810. doi: 10.1016/j.bioorg.2020.103810 PMID: 32325333
- Elya, B.; Handayani, R.; Sauriasari, R.; Azizahwati,; Hasyyati, U.S.; Permana, I.T.; Permatasar, Y.I. Antidiabetic activity and phytochemical screening of extracts from Indonesian plants by inhibition of alpha amylase, alpha glucosidase and dipeptidyl peptidase IV. Pak. J. Biol. Sci., 2015, 18(6), 279-284. doi: 10.3923/pjbs.2015.279.284
- Okechukwu, P.; Sharma, M.; Tan, W.H.; Chan, H.K.; Chirara, K.; Gaurav, A.; Al-Nema, M. In vitro anti-diabetic activity and in silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes. Pharmacia, 2020, 67(4), 363-371. doi: 10.3897/pharmacia.67.e58392
- Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med., 2016, 16(S1), 185. doi: 10.1186/s12906-016-1085-1
- Tysoe, C.; Williams, L.K.; Keyzers, R.; Nguyen, N.T.; Tarling, C.; Wicki, J.; Goddard-Borger, E.D.; Aguda, A.H.; Perry, S.; Foster, L.J.; Andersen, R.J.; Brayer, G.D.; Withers, S.G. Potent human α-amylase inhibition by the β-defensin-like protein helianthamide. ACS Cent. Sci., 2016, 2(3), 154-161. doi: 10.1021/acscentsci.5b00399 PMID: 27066537
- Wang, C. Guo, L.; Hao, J.; Wang, L.; Zhu, W. α-Glucosidase inhibitors from the marine-derived fungus aspergillus flavipes HN4-13. J. Nat. Prod., 2016, 79(11), 2977-2981. doi: 10.1021/acs.jnatprod.6b00766 PMID: 27933892
- Cheng, Z.; Li, Y.; Liu, W.; Liu, L.; Liu, J.; Yuan, W.; Luo, Z.; Xu, W.; Li, Q. Butenolide derivatives with α-glucosidase inhibitions from the deep-sea-derived fungus Aspergillus terreus YPGA10. Mar. Drugs, 2019, 17(6), 332. doi: 10.3390/md17060332 PMID: 31163670
- Tasnuva, S.T.; Qamar, U.A.; Ghafoor, K.; Sahena, F.; Jahurul, M.H.A.; Rukshana, A.H.; Juliana, M.J.; Al-Juhaimi, F.Y.; Jalifah, L.; Jalal, K.C.A.; Ali, M.E.; Zaidul, I.S.M. α-glucosidase inhibitors isolated from Mimosa pudica L. Nat. Prod. Res., 2019, 33(10), 1495-1499. doi: 10.1080/14786419.2017.1419224 PMID: 29281898
- Kumar, V.; Prakash, O.; Kumar, S.; Narwal, S. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29. doi: 10.4103/0973-7847.79096 PMID: 22096315
- Sun, Y.; Liu, J.; Li, L.; Gong, C.; Wang, S.; Yang, F.; Hua, H.; Lin, H. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg. Med. Chem. Lett., 2018, 28(3), 315-318. doi: 10.1016/j.bmcl.2017.12.049 PMID: 29295795
- Trang, N.T.H.; Tang, D.Y.Y.; Chew, K.W.; Linh, N.T.; Hoang, L.T.; Cuong, N.T.; Yen, H.T.; Thao, N.T.; Trung, N.T.; Show, P.L.; Tuyen, D.T. Discovery of α-glucosidase inhibitors from marine microorganisms: Optimization of culture conditions and medium composition. Mol. Biotechnol., 2021, 63(11), 1004-1015. doi: 10.1007/s12033-021-00362-3 PMID: 34185249
- Chaudhry, F.; Choudhry, S.; Huma, R.; Ashraf, M.; al-Rashida, M.; Munir, R.; Sohail, R.; Jahan, B.; Munawar, M.A.; Khan, M.A. Hetarylcoumarins: Synthesis and biological evaluation as potent α -glucosidase inhibitors. Bioorg. Chem., 2017, 73, 1-9. doi: 10.1016/j.bioorg.2017.05.009 PMID: 28521172
- Liu, Z.; Ma, S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem, 2017, 12(11), 819-829. doi: 10.1002/cmdc.201700216 PMID: 28498640
- Tafesse, T.B.; Bule, M.H.; Khoobi, M.; Faramarzi, M.A.; Abdollahi, M.; Amini, M. Coumarin-based scaffold as α-glucosidase inhibitory activity: Implication for the development of potent antidiabetic agents. Mini Rev. Med. Chem., 2020, 20(2), 134-151. doi: 10.2174/1389557519666190925162536 PMID: 31553294
- Mollazadeh, M.; Mohammadi-Khanaposhtani, M.; Valizadeh, Y.; Zonouzi, A.; Faramarzi, M.A.; Kiani, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Mahdavi, M.; Hajimiri, M.H. Novel coumarin containing dithiocarbamate derivatives as potent α-glucosidase inhibitors for management of type 2 diabetes. Med. Chem., 2021, 17(3), 264-272. doi: 10.2174/1573406416666200826101205 PMID: 32851964
- Barrett, M.L.; Udani, J.K. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutr. J., 2011, 10(1), 24. doi: 10.1186/1475-2891-10-24 PMID: 21414227
- Teng, H.; Chen, L. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3438-3448. doi: 10.1080/10408398.2015.1129309 PMID: 26854322
- Ahmed, M.U.; Ibrahim, A.; Dahiru, N.J.; Mohammed, H.S. Alpha amylase inhibitory potential and mode of inhibition of oils from Allium sativum (Garlic) and Allium cepa (Onion). Clin. Med. Insights Endocrinol. Diabetes, 2020, 13. doi: 10.1177/1179551420963106 PMID: 33088187
- Sangilimuthu, A.Y.; Sivaraman, T.; Chandrasekaran, R.; Sundaram, K.M.; Ekambaram, G. Screening chemical inhibitors for alpha-amylase from leaves extracts of Murraya koenigii (Linn.) and Aegle marmelos L. J. Complement. Integr. Med., 2021, 18(1), 51-57. doi: 10.1515/jcim-2019-0345 PMID: 32745070
- Bhatnagar, A.; Saini, R.; Dagar, P.; Mishra, A. Molecular modelling and in vitro studies of Daruharidra as a potent alpha-amylase inhibitor. J. Biomol. Struct. Dyn., 2023, 41(9), 3872-3883. doi: 10.1080/07391102.2022.2058093 PMID: 35412420
- Tamboli, E.; Bhatnagar, A.; Mishra, A. Alpha-amylase inhibitors from mycelium of an oyster mushroom. Prep. Biochem. Biotechnol., 2018, 48(8), 693-699. doi: 10.1080/10826068.2018.1487849 PMID: 30015540
- Sharma, P.; Joshi, T.; Joshi, T.; Chandra, S.; Tamta, S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J. Biomol. Struct. Dyn., 2021, 39(17), 6524-6538. doi: 10.1080/07391102.2020.1801507 PMID: 32748738
- Ali, M.; Khan, M.; Zaman, K.; Wadood, A.; Iqbal, M.; Alam, A.; Shah, S.; Yousaf, M.; Rafique, R.; Khan, K.M. Chalcones: As potent α-amylase enzyme inhibitors; synthesis, in vitro, and in silico studies. Med. Chem., 2021, 17(8), 903-912. doi: 10.2174/1573406416666200611103039 PMID: 32525781
- Pohl, N. Acyclic peptide inhibitors of amylases. Chem. Biol., 2005, 12(12), 1257-1258. doi: 10.1016/j.chembiol.2005.11.009 PMID: 16356842
- Roskar, I.; Molek, P.; Vodnik, M.; Stempelj, M.; Strukelj, B.; Lunder, M. Peptide modulators of alpha-glucosidase. J. Diabetes Investig., 2015, 6(6), 625-631. doi: 10.1111/jdi.12358 PMID: 26543535
- Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). J. Agric. Food Chem., 2018, 66(19), 4872-4882. doi: 10.1021/acs.jafc.8b00960 PMID: 29667406
- Evaristus, N.A.; Wan Abdullah, W.N.; Gan, C.Y. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes. Peptides, 2018, 102, 61-67. doi: 10.1016/j.peptides.2018.03.001 PMID: 29510154
- Awosika, T.O.; Aluko, R.E. Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int. J. Food Sci. Technol., 2019, 54(6), 2021-2034. doi: 10.1111/ijfs.14087
- Zhou, H.; Safdar, B.; Li, H.; Yang, L.; Ying, Z.; Liu, X. Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate. Food Chem., 2023, 403, 134434. doi: 10.1016/j.foodchem.2022.134434 PMID: 36358076
- Li, H.; Zhou, H.; Zhang, J.; Fu, X.; Ying, Z.; Liu, X. Proteinaceous α-amylase inhibitors: Purification, detection methods, types and mechanisms. Int. J. Food Prop., 2021, 24(1), 277-290. doi: 10.1080/10942912.2021.1876087
- Liu, L.; Chen, J.; Li, X. Novel peptides with α-glucosidase inhibitory activity from Changii Radix hydrolysates. Process Biochem., 2021, 111(Part 1), 200-206. doi: 10.1016/j.procbio.2021.08.019
- Liu, W.; Li, H.; Wen, Y.; Liu, Y.; Wang, J.; Sun, B. Molecular mechanism for the α-glucosidase inhibitory effect of wheat germ peptides. J. Agric. Food Chem., 2021, 69(50), 15231-15239. doi: 10.1021/acs.jafc.1c06098 PMID: 34874169
- Zhao, Q.; Wei, G.; Li, K.; Duan, S.; Ye, R.; Huang, A. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein. Lebensm. Wiss. Technol., 2022, 156, 113062. doi: 10.1016/j.lwt.2021.113062
- Baba, W.N.; Mudgil, P.; Kamal, H.; Kilari, B.P.; Gan, C.Y.; Maqsood, S. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins. J. Dairy Sci., 2021, 104(2), 1364-1377. doi: 10.3168/jds.2020-19271 PMID: 33309363
- Al-masri, I.M.; Mohammad, M.K.; Tahaa, M.O. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1061-1066. doi: 10.1080/14756360802610761 PMID: 19640223
- Guasch, L.; Ojeda, M.J.; González-Abuín, N.; Sala, E.; Cereto-Massagué, A.; Mulero, M.; Valls, C.; Pinent, M.; Ardévol, A.; Garcia-Vallvé, S.; Pujadas, G. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): Virtual screening and activity assays. PLoS One, 2012, 7(9), e44971. doi: 10.1371/journal.pone.0044971 PMID: 22984596
- Kaelin, D.E.; Smenton, A.L.; Eiermann, G.J.; He, H.; Leiting, B.; Lyons, K.A.; Patel, R.A.; Patel, S.B.; Petrov, A.; Scapin, G.; Wu, J.K.; Thornberry, N.A.; Weber, A.E.; Duffy, J.L. 4-Arylcyclohexylalanine analogs as potent, selective, and orally active inhibitors of dipeptidyl peptidase IV. Bioorg. Med. Chem. Lett., 2007, 17(21), 5806-5811. doi: 10.1016/j.bmcl.2007.08.049 PMID: 17851076
- Edmondson, S.D.; Mastracchio, A.; Cox, J.M.; Eiermann, G.J.; He, H.; Lyons, K.A.; Patel, R.A.; Patel, S.B.; Petrov, A.; Scapin, G.; Wu, J.K.; Xu, S.; Zhu, B.; Thornberry, N.A.; Roy, R.S.; Weber, A.E. Aminopiperidine-fused imidazoles as dipeptidyl peptidase-IV inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4097-4101. doi: 10.1016/j.bmcl.2009.06.011 PMID: 19539471
- Seshadri, K.G.; Kirubha, M.H.B. Gliptins: A new class of oral antidiabetic agents. Indian J. Pharm. Sci., 2009, 71(6), 608-614. doi: 10.4103/0250-474X.59541 PMID: 20376212
- Hopsu-Havu, V.K.; Glenner, G.G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide. Histochem. Cell Biol., 1966, 7(3), 197-201. doi: 10.1007/BF00577838 PMID: 5959122
- Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem., 1993, 214(3), 829-835. doi: 10.1111/j.1432-1033.1993.tb17986.x PMID: 8100523
- Capuano, A.; Sportiello, L.; Maiorino, M.I.; Rossi, F.; Giugliano, D.; Esposito, K. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin. Drug Des. Devel. Ther., 2013, 7, 989-1001. PMID: 24068868
- Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care, 2003, 26(10), 2929-2940. doi: 10.2337/diacare.26.10.2929 PMID: 14514604
- Vilsbøll, T.; Holst, J.J. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia, 2004, 47(3), 357-366. doi: 10.1007/s00125-004-1342-6 PMID: 14968296
- Mentlein, R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul. Pept., 1999, 85(1), 9-24. doi: 10.1016/S0167-0115(99)00089-0 PMID: 10588446
- Knudsen, L.B.; Pridal, L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. J. Pharmacol., 1996, 318(2-3), 429-435. doi: 10.1016/S0014-2999(96)00795-9 PMID: 9016935
- Juillerat-Jeanneret, L. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? J. Med. Chem., 2014, 57(6), 2197-2212. doi: 10.1021/jm400658e PMID: 24099035
- Weber, A.E. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J. Med. Chem., 2004, 47(17), 4135-4141. doi: 10.1021/jm030628v PMID: 15293982
- Lambeir, A.M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294. doi: 10.1080/713609354 PMID: 12892317
- Lamers, D.; Famulla, S.; Wronkowitz, N.; Hartwig, S.; Lehr, S.; Ouwens, D.M.; Eckardt, K.; Kaufman, J.M.; Ryden, M.; Müller, S.; Hanisch, F.G.; Ruige, J.; Arner, P.; Sell, H.; Eckel, J. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes, 2011, 60(7), 1917-1925. doi: 10.2337/db10-1707 PMID: 21593202
- Morrison, M.E.; Vijayasaradhi, S.; Engelstein, D.; Albino, A.P.; Houghton, A.N. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J. Exp. Med., 1993, 177(4), 1135-1143. doi: 10.1084/jem.177.4.1135 PMID: 8096237
- Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019. doi: 10.1210/er.2014-1035 PMID: 25216328
- Cordero, O.J.; Salgado, F.J.; Nogueira, M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother., 2009, 58(11), 1723-1747. doi: 10.1007/s00262-009-0728-1 PMID: 19557413
- Ahrén, B. Dipeptidyl peptidase-4 inhibitors: Clinical data and clinical implications. Diabetes Care, 2007, 30(6), 1344-1350. doi: 10.2337/dc07-0233 PMID: 17337494
- Fleischer, B. CD26: A surface protease involved in T-cell activation. Immunol. Today, 1994, 15(4), 180-184. doi: 10.1016/0167-5699(94)90316-6 PMID: 7911022
- Lessard, J.; Pelletier, M.; Biertho, L.; Biron, S.; Marceau, S.; Hould, F.S.; Lebel, S.; Moustarah, F.; Lescelleur, O.; Marceau, P.; Tchernof, A. Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: Fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS One, 2015, 10(3), e0122065. doi: 10.1371/journal.pone.0122065 PMID: 25816202
- Mest, H.J.; Mentlein, R. Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia, 2005, 48(4), 616-620. doi: 10.1007/s00125-005-1707-5 PMID: 15770466
- Meester, I.D.; Durinx, C.; Bal, G.; Proost, P.; Struyf, S.; Goossens, F.; Augustyns, K.; Scharpé, S. Natural substrates of dipeptidyl peptidase IV. Cellular peptidases in immune functions and diseases.In: Advances in Experimental Medicine and Biology; Springer: Boston, MA, 2002. doi: 10.1007/0-306-46826-3_7
- Olsen, C.; Wagtmann, N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene, 2002, 299(1-2), 185-193. doi: 10.1016/S0378-1119(02)01059-4 PMID: 12459266
- Röhrborn, D.; Wronkowitz, N.; Eckel, J. DPP4 in diabetes. Front. Immunol., 2015, 6, 386. doi: 10.3389/fimmu.2015.00386 PMID: 26284071
- Lin, Y.S.; Han, C.H.; Lin, S.Y.; Hou, W.C. Synthesized peptides from yam dioscorin hydrolysis in silico exhibit dipeptidyl peptidase-IV inhibitory activities and oral glucose tolerance improvements in normal mice. J. Agric. Food Chem., 2016, 64(33), 6451-6458. doi: 10.1021/acs.jafc.6b02403 PMID: 27499387
- Nongonierma, A.B.; FitzGerald, R.J. Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 2013, 39, 157-163. doi: 10.1016/j.peptides.2012.11.016 PMID: 23219487
- Lacroix, I.M.E.; Li-Chan, E.C.Y. Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J., 2012, 25(2), 97-102. doi: 10.1016/j.idairyj.2012.01.003
- Li-Chan, E.C.Y.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agric. Food Chem., 2012, 60(4), 973-978. doi: 10.1021/jf204720q PMID: 22225496
- Nongonierma, A.B.; Le Maux, S.; Dubrulle, C.; Barre, C.; FitzGerald, R.J. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. J. Cereal Sci., 2015, 65, 112-118. doi: 10.1016/j.jcs.2015.07.004
- Oseguera-Toledo, M.E.; Gonzalez de Mejia, E.; Amaya-Llano, S.L. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int., 2015, 76(Pt 3), 839-851. doi: 10.1016/j.foodres.2015.07.046 PMID: 28455070
- Nongonierma, A.B.; FitzGerald, R.J. Investigation of the potential of hemp, pea, rice and soy protein hydrolysates as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Dig., 2015, 6(1-3), 19-29. doi: 10.1007/s13228-015-0039-2
- Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G.M.; Díaz-Gois, A. González de, M.E.; Barba de la Rosa, A.P. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem., 2013, 136(2), 758-764. doi: 10.1016/j.foodchem.2012.08.032 PMID: 23122124
- Harnedy, P.A.; FitzGerald, R.J. In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J. Appl. Phycol., 2013, 25(6), 1793-1803. doi: 10.1007/s10811-013-0017-4
- Thoma, R.; Löffler, B.; Stihle, M.; Huber, W.; Ruf, A.; Hennig, M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure, 2003, 11(8), 947-959. doi: 10.1016/S0969-2126(03)00160-6 PMID: 12906826
- Hiramatsu, H.; Yamamoto, A.; Kyono, K.; Higashiyama, Y.; Fukushima, C.; Shima, H.; Sugiyama, S.; Inaka, K.; Shimizu, R. The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Biol. Chem., 2004, 385(6), 561-564. doi: 10.1515/BC.2004.068 PMID: 15255191
- Bednarczyk, J.L.; Carroll, S.M.; Marin, C.; McIntyre, B.W. Triggering of the proteinase dipeptidyl peptidase IV (CD26) amplifies human T lymphocyte proliferation. J. Cell. Biochem., 1991, 46(3), 206-218. doi: 10.1002/jcb.240460304 PMID: 1723066
- Ajami, K.; Abbott, C.A.; Obradovic, M.; Gysbers, V.; Kähne, T.; McCaughan, G.W.; Gorrell, M.D. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry, 2003, 42(3), 694-701. doi: 10.1021/bi026846s PMID: 12534281
- Rasmussen, H.B.; Branner, S.; Wiberg, F.C.; Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol., 2003, 10(1), 19-25. doi: 10.1038/nsb882 PMID: 12483204
- Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun., 2013, 434(2), 191-196. doi: 10.1016/j.bbrc.2013.03.010 PMID: 23501107
- Abbott, C.A.; McCaughan, G.W.; Gorrell, M.D. Two highly conserved glutamic acid residues in the predicted β propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett., 1999, 458(3), 278-284. doi: 10.1016/S0014-5793(99)01166-7 PMID: 10570924
- Zhang, X.; Wang, R.; Cheng, C.; Zhang, Y.; Ma, Y.; Lu, W. Identification of two novel dipeptidyl peptidase-IV inhibitory peptides from sheep whey protein and inhibition mechanism revealed by molecular docking. Food Biosci., 2022, 48, 101733. doi: 10.1016/j.fbio.2022.101733
- Luo, F.; Fu, Y.; Ma, L.; Dai, H.; Wang, H.; Chen, H.; Zhu, H.; Yu, Y.; Hou, Y.; Zhang, Y. Exploration of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from silkworm pupae (Bombyx mori) proteins based on in silico and in vitro assessments. J. Agric. Food Chem., 2022, 70(12), 3862-3871. doi: 10.1021/acs.jafc.1c08225 PMID: 35230117
- Gu, H.; Gao, J.; Shen, Q.; Gao, D.; Wang, Q.; Tangyu, M.; Mao, X. Dipeptidyl peptidase-IV inhibitory activity of millet protein peptides and the related mechanisms revealed by molecular docking. Lebensm. Wiss. Technol., 2021, 138, 110587. doi: 10.1016/j.lwt.2020.110587
- Tan, J.; Yang, J.; Zhou, X.; Hamdy, A.M.; Zhang, X.; Suo, H.; Zhang, Y.; Li, N.; Song, J. Tenebrio molitor proteins-derived DPP-4 inhibitory peptides: Preparation, identification, and molecular binding mechanism. Foods, 2022, 11(22), 3626. doi: 10.3390/foods11223626 PMID: 36429217
- Zhao, W.; Zhang, D.; Yu, Z.; Ding, L.; Liu, J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods, 2020, 64, 103649. doi: 10.1016/j.jff.2019.103649
- Mohd Salim, M.A.S.; Gan, C.Y. Dual-function peptides derived from egg white ovalbumin: Bioinformatics identification with validation using in vitro assay. J. Funct. Foods, 2020, 64, 103618. doi: 10.1016/j.jff.2019.103618
- Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I.; Allergen, F.P. Allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014, 30(6), 846-851. doi: 10.1093/bioinformatics/btt619 PMID: 24167156
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci., 2019, 20(23), 5978. doi: 10.3390/ijms20235978 PMID: 31783634
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr., 2020, 8(12), 6320-6337. doi: 10.1002/fsn3.1987 PMID: 33312519
- You, H.; Wu, T.; Wang, W.; Li, Y.; Liu, X.; Ding, L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res. Int., 2022, 156, 111176. doi: 10.1016/j.foodres.2022.111176 PMID: 35651037
- You, H.; Zhang, Y.; Wu, T.; Li, J.; Wang, L.; Yu, Z.; Liu, J.; Liu, X.; Ding, L. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. Lebensm. Wiss. Technol., 2022, 160, 113255. doi: 10.1016/j.lwt.2022.113255
- Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wu, J.; Jiang, D.; Ju, X.; Wang, L. Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. J. Agric. Food Chem., 2019, 67(13), 3679-3690. doi: 10.1021/acs.jafc.9b01069 PMID: 30854852
- Mojica, L.; Luna-Vital, D.A.; González de Mejía, E. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J. Sci. Food Agric., 2017, 97(8), 2401-2410. doi: 10.1002/jsfa.8053 PMID: 27664971
- Hatanaka, T.; Inoue, Y.; Arima, J.; Kumagai, Y.; Usuki, H.; Kawakami, K.; Kimura, M.; Mukaihara, T. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem., 2012, 134(2), 797-802. doi: 10.1016/j.foodchem.2012.02.183 PMID: 23107693
- Wang, W.; Liu, X.; Li, Y.; You, H.; Yu, Z.; Wang, L.; Liu, X.; Ding, L. Identification and characterization of dipeptidyl peptidase-iv inhibitory peptides from oat proteins. Foods, 2022, 11(10), 1406. doi: 10.3390/foods11101406 PMID: 35626976
- Wang, F.; Yu, G.; Zhang, Y.; Zhang, B.; Fan, J. Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum Vulgare trifurcatum (L.) Trofim) proteins. J. Agric. Food Chem., 2015, 63(43), 9543-9549. doi: 10.1021/acs.jafc.5b04016 PMID: 26468909
- Zan, R.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H.; Zhu, L. Identification of novel dipeptidyl peptidase-iv inhibitory peptides in chickpea protein hydrolysates. J. Agric. Food Chem., 2023, 71(21), 8211-8219. doi: 10.1021/acs.jafc.3c00603 PMID: 37191584
- Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: in vitro biochemical screening and in silico molecular modeling study. J. Agric. Food Chem., 2016, 64(51), 9601-9606. doi: 10.1021/acs.jafc.6b04041 PMID: 27983830
- Wang, F.; Zhang, Y.; Yu, T.; He, J.; Cui, J.; Wang, J.; Cheng, X.; Fan, J. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in CaCo2 cells. J. Funct. Foods, 2018, 42, 12-20. doi: 10.1016/j.jff.2017.12.061
- Sato, K.; Miyasaka, S.; Tsuji, A.; Tachi, H. Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chem., 2018, 261, 51-56. doi: 10.1016/j.foodchem.2018.04.029 PMID: 29739605
- Lin, Y.S.; Han, C.H.; Lin, S.Y.; Hou, W.C. Synthesized peptides from yam dioscorin hydrolysis in silico exhibit dipeptidyl peptidase- IV inhibitory activities and oral glucose tolerance improvements in normal mice. J. Agric. Food Chem, 2016, 64(33), 6451-6458. doi: 10.1021/acs.jafc.6b02403 PMID: 27499387
- Chandrasekaran, S.; Luna-Vital, D.; de Mejia, E.G. Identification and comparison of peptides from chickpea protein hydrolysates using either bromelain or gastrointestinal enzymes and their relationship with markers of type 2 diabetes and bitterness. Nutrients, 2020, 12(12), 3843. doi: 10.3390/nu12123843 PMID: 33339265
- Umezawa, H.; Aoyagi, T.; Ogawa, K.; Naganawa, H.; Hamada, M.; Takeuchi, T. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J. Antibiot., 1984, 37(4), 422-425. doi: 10.7164/antibiotics.37.422 PMID: 6427168
- Harnedy, P.A.; OKeeffe, M.B.; FitzGerald, R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem., 2015, 172, 400-406. doi: 10.1016/j.foodchem.2014.09.083 PMID: 25442570
- Nongonierma, A.B.; Cadamuro, C.; Le Gouic, A.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem., 2019, 279, 70-79. doi: 10.1016/j.foodchem.2018.11.142 PMID: 30611514
- Zhang, Y.; Chen, R.; Ma, H.; Chen, S. Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC-MS/MS. J. Agric. Food Chem., 2015, 63(40), 8819-8828. doi: 10.1021/acs.jafc.5b03062 PMID: 26323964
- Lacroix, I.M.E.; Li-Chan, E.C.Y. Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides, 2014, 54, 39-48. doi: 10.1016/j.peptides.2014.01.002 PMID: 24440459
- Jia, C.; Hussain, N.; Joy Ujiroghene, O.; Pang, X.; Zhang, S.; Lu, J.; Liu, L.; Lv, J. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chem., 2020, 318, 126333. doi: 10.1016/j.foodchem.2020.126333 PMID: 32151919
- Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem., 2013, 141(2), 1072-1077. doi: 10.1016/j.foodchem.2013.03.056 PMID: 23790888
- Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J., 2012, 22(1), 24-30. doi: 10.1016/j.idairyj.2011.08.002
- Nongonierma, A.B.; FitzGerald, R.J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. J. Funct. Foods, 2013, 5(4), 1909-1917. doi: 10.1016/j.jff.2013.09.012
- Song, J.J.; Wang, Q.; Du, M.; Ji, X.M.; Mao, X.Y. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates. J. Dairy Sci., 2017, 100(9), 6885-6894. doi: 10.3168/jds.2016-11828 PMID: 28711271
- Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; Fitz-Gerald, R.J. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem., 2018, 244, 340-348. doi: 10.1016/j.foodchem.2017.10.033 PMID: 29120791
- Zhang, Y.; Chen, R.; Zuo, F.; Ma, H.; Zhang, Y.; Chen, S. Comparison of dipeptidyl peptidase IV-inhibitory activity of peptides from bovine and caprine milk casein by in silico and in vitro analyses. Int. Dairy J., 2016, 53, 37-44. doi: 10.1016/j.idairyj.2015.10.001
- Ashok, A.; Brijesha, N.; Aparna, H.S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. Eur. J. Med. Chem., 2019, 180, 99-110. doi: 10.1016/j.ejmech.2019.07.009 PMID: 31301567
- Jin, R.; Teng, X.; Shang, J.; Wang, D.; Liu, N. Identification of novel DPP-IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Res. Int., 2020, 133, 109161. doi: 10.1016/j.foodres.2020.109161 PMID: 32466942
- Jin, Y.; Yan, J.; Yu, Y.; Qi, Y. Screening and identification of DPP-IV inhibitory peptides from deer skin hydrolysates by an integrated approach of LC-MS/MS and in silico analysis. J. Funct. Foods, 2015, 18, 344-357. doi: 10.1016/j.jff.2015.07.015
- Nong, N.T.P.; Chen, Y.K.; Shih, W.L.; Hsu, J.L. Characterization of novel dipeptidyl peptidase-iv inhibitory peptides from soft-shelled turtle yolk hydrolysate using orthogonal bioassay-guided fractionations coupled with in vitro and in silico study. Pharmaceuticals, 2020, 13(10), 308. doi: 10.3390/ph13100308 PMID: 33066488
- Hong, H.; Zheng, Y.; Song, S.; Zhang, Y.; Zhang, C.; Liu, J.; Luo, Y. Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. Food Biosci., 2020, 38, 100748. doi: 10.1016/j.fbio.2020.100748
- Martini, S.; Conte, A.; Tagliazucchi, D. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. J. Proteomics, 2019, 208, 103500. doi: 10.1016/j.jprot.2019.103500 PMID: 31454557
- Yu, Z.; Yin, Y.; Zhao, W.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chem., 2011, 129(4), 1376-1382. doi: 10.1016/j.foodchem.2011.05.067
- Zambrowicz, A.; Pokora, M.; Setner, B.; Dąbrowska, A.; Szołtysik, M.; Babij, K.; Szewczuk, Z.; Trziszka, T.; Lubec, G.; Chrzanowska, J. Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization. Amino Acids, 2015, 47(2), 369-380. doi: 10.1007/s00726-014-1869-x PMID: 25408464
- Wang, T.Y.; Hsieh, C.H.; Hung, C.C.; Jao, C.L.; Chen, M.C.; Hsu, K.C. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish. J. Funct. Foods, 2015, 19, 330-340. doi: 10.1016/j.jff.2015.09.037
- Huang, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides, 2012, 35(1), 114-121. doi: 10.1016/j.peptides.2012.03.006 PMID: 22450467
- Zhang, Y.; Chen, R.; Chen, X.; Zeng, Z.; Ma, H.; Chen, S. Dipeptidyl peptidase IV-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix Val.) proteins. J. Agric. Food Chem., 2016, 64(4), 831-839. doi: 10.1021/acs.jafc.5b05429 PMID: 26758401
- Zhang, C.; Zhang, Y.; Wang, Z.; Chen, S.; Luo, Y. Production and identification of antioxidant and angiotensin-converting enzyme inhibition and dipeptidyl peptidase IV inhibitory peptides from bighead carp (Hypophthalmichthys nobilis) muscle hydrolysate. J. Funct. Foods, 2017, 35, 224-235. doi: 10.1016/j.jff.2017.05.032
- Zhao, W.; Zhang, D.; Yu, Z.; Ding, L.; Liu, J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods, 2020, 64, 103649.
- Gallego, M.; Aristoy, M.C.; Toldrá, F. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Sci., 2014, 96(2), 757-761. doi: 10.1016/j.meatsci.2013.09.014 PMID: 24200567
- Neves, A.C.; Harnedy, P.A.; OKeeffe, M.B.; Alashi, M.A.; Aluko, R.E.; FitzGerald, R.J. Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res. Int., 2017, 100(Pt 1), 112-120. doi: 10.1016/j.foodres.2017.06.065 PMID: 28873669
- Nongonierma, A.B.; FitzGerald, R.J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food Funct., 2013, 4(12), 1843-1849. doi: 10.1039/c3fo60262a PMID: 24193022
- Lan, V.T.T.; Ito, K.; Ito, S.; Kawarasaki, Y. Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV. Peptides, 2014, 54, 166-170. doi: 10.1016/j.peptides.2014.01.027 PMID: 24512990
- Li-Chan, E.C.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agricul. Food Chem., 2012, 60(4), 973-978.
- Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem., 2013, 141(2), 1072-1077.
- Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Inter. Dairy J., 2012, 22(1), 24-30.
- Tulipano, G.; Sibilia, V.; Caroli, A.M.; Cocchi, D. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides, 2011, 32(4), 835-838. doi: 10.1016/j.peptides.2011.01.002 PMID: 21256171
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol. Metab., 2021, 46, 101102. doi: 10.1016/j.molmet.2020.101102 PMID: 33068776
- Tajima, N.; Kadowaki, T.; Okamoto, T.; Sato, A.; Okuyama, K.; Minamide, T.; Arjona, F.J.C. Sitagliptin added to voglibose monotherapy improves glycemic control in patients with type 2 diabetes. J. Diabetes Investig., 2013, 4(6), 595-604. doi: 10.1111/jdi.12116 PMID: 24843714
- Horikawa, Y.; Enya, M.; Iizuka, K.; Chen, G.Y.; Kawachi, S.; Suwa, T.; Takeda, J. Synergistic effect of α-glucosidase inhibitors and dipeptidyl peptidase 4 inhibitor treatment. J. Diabetes Investig., 2011, 2(3), 200-203. doi: 10.1111/j.2040-1124.2010.00081.x PMID: 24843484
- Charbonnel, B.; Karasik, A.; Liu, J.; Wu, M.; Meininger, G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care, 2006, 29(12), 2638-2643. doi: 10.2337/dc06-0706 PMID: 17130197
- Yang, H.K.; Lee, S.H.; Shin, J.; Choi, Y.H.; Ahn, Y.B.; Lee, B.W.; Rhee, E.J.; Min, K.W.; Yoon, K.H. Acarbose add-on therapy in patients with type 2 diabetes mellitus with metformin and sitagliptin failure: A multicenter, randomized, double-blind, placebo-controlled study. Diabetes Metab. J., 2019, 43(3), 287-301. doi: 10.4093/dmj.2018.0054 PMID: 30604599
- Huang, S.L.; Hung, C.C.; Jao, C.L.; Tung, Y.S.; Hsu, K.C. Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats. J. Funct. Foods, 2014, 11, 235-242. doi: 10.1016/j.jff.2014.09.010
- Aart, V.A.; Catharina, M.J.; Zeeland-Wolbers, V.; Maria, L.A.; Gilst, V.; Hendrikus, W. Egg protein hydrolysates. WO Patent 2009/128713 2009.
- Uchida, M.; Ohshiba, Y.; Mogami, O. Novel dipeptidyl peptidase-4-inhibiting peptide derived from β-lactoglobulin. J. Pharmacol. Sci., 2011, 117(1), 63-66. doi: 10.1254/jphs.11089SC PMID: 21836374
- Hira, T.; Mochida, T.; Miyashita, K.; Hara, H. GLP-1 secretion is enhanced directly in the ileum but indirectly in the duodenum by a newly identified potent stimulator, zein hydrolysate, in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(4), G663-G671. doi: 10.1152/ajpgi.90635.2008 PMID: 19661152
- Mochida, T.; Hira, T.; Hara, H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology, 2010, 151(7), 3095-3104. doi: 10.1210/en.2009-1510 PMID: 20410194
- Power, O.; Hallihan, A.; Jakeman, P. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids, 2009, 37(2), 333-339. doi: 10.1007/s00726-008-0156-0 PMID: 18679613
- Istrate, D.; Crisan, L. Natural compounds as DPP-4 inhibitors: 3D-similarity search, ADME toxicity, and molecular docking approaches. Symmetry, 2022, 14(9), 1842. doi: 10.3390/sym14091842
- Sajal, H.; Patil, S.M.; Raj, R.; Shbeer, A.M.; Ageel, M.; Ramu, R. Computer-aided screening of phytoconstituents from ocimum tenuiflorum against diabetes mellitus targeting DPP4 inhibition: A combination of molecular docking, molecular dynamics, and pharmacokinetics approaches. Molecules, 2022, 27(16), 5133. doi: 10.3390/molecules27165133 PMID: 36014373
Қосымша файлдар
