An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides


Дәйексөз келтіру

Толық мәтін

Аннотация

Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α-glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, ‘peptides’ can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.

Авторлар туралы

Sachithanantham Sivaraman

Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT

Email: info@benthamscience.net

Varatharajan Sabareesh

Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Green, B.D.; Flatt, P.R.; Bailey, C.J. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab. Vasc. Dis. Res., 2006, 3(3), 159-165. doi: 10.3132/dvdr.2006.024 PMID: 17160910
  2. Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front. Pharmacol., 2022, 12, 807548. doi: 10.3389/fphar.2021.807548 PMID: 35126141
  3. LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev., 2021, 42(1), 77-96. doi: 10.1210/endrev/bnaa023 PMID: 32897388
  4. Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; Jurczak, M.J.; Camporez, J.P.; Lee, H.Y.; Cline, G.W.; Samuel, V.T.; Kibbey, R.G.; Shulman, G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510(7506), 542-546. doi: 10.1038/nature13270 PMID: 24847880
  5. Triggle, C.R.; Mohammed, I.; Bshesh, K.; Marei, I.; Ye, K.; Ding, H.; MacDonald, R.; Hollenberg, M.D.; Hill, M.A. Metformin: Is it a drug for all reasons and diseases? Metabolism, 2022, 133, 155223. doi: 10.1016/j.metabol.2022.155223 PMID: 35640743
  6. Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr. Diabetes Rev., 2020, 16(2), 117-136. doi: 10.2174/18756417OTg5lMTI0TcVY PMID: 31237215
  7. Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol., 2020, 145, 111738. doi: 10.1016/j.fct.2020.111738 PMID: 32916220
  8. Deng, X.; Tavallaie, M.S.; Sun, R.; Wang, J.; Cai, Q.; Shen, J.; Lei, S.; Fu, L.; Jiang, F. Drug discovery approaches targeting the incretin pathway. Bioorg. Chem., 2020, 99, 103810. doi: 10.1016/j.bioorg.2020.103810 PMID: 32325333
  9. Elya, B.; Handayani, R.; Sauriasari, R.; Azizahwati,; Hasyyati, U.S.; Permana, I.T.; Permatasar, Y.I. Antidiabetic activity and phytochemical screening of extracts from Indonesian plants by inhibition of alpha amylase, alpha glucosidase and dipeptidyl peptidase IV. Pak. J. Biol. Sci., 2015, 18(6), 279-284. doi: 10.3923/pjbs.2015.279.284
  10. Okechukwu, P.; Sharma, M.; Tan, W.H.; Chan, H.K.; Chirara, K.; Gaurav, A.; Al-Nema, M. In vitro anti-diabetic activity and in silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes. Pharmacia, 2020, 67(4), 363-371. doi: 10.3897/pharmacia.67.e58392
  11. Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med., 2016, 16(S1), 185. doi: 10.1186/s12906-016-1085-1
  12. Tysoe, C.; Williams, L.K.; Keyzers, R.; Nguyen, N.T.; Tarling, C.; Wicki, J.; Goddard-Borger, E.D.; Aguda, A.H.; Perry, S.; Foster, L.J.; Andersen, R.J.; Brayer, G.D.; Withers, S.G. Potent human α-amylase inhibition by the β-defensin-like protein helianthamide. ACS Cent. Sci., 2016, 2(3), 154-161. doi: 10.1021/acscentsci.5b00399 PMID: 27066537
  13. Wang, C. Guo, L.; Hao, J.; Wang, L.; Zhu, W. α-Glucosidase inhibitors from the marine-derived fungus aspergillus flavipes HN4-13. J. Nat. Prod., 2016, 79(11), 2977-2981. doi: 10.1021/acs.jnatprod.6b00766 PMID: 27933892
  14. Cheng, Z.; Li, Y.; Liu, W.; Liu, L.; Liu, J.; Yuan, W.; Luo, Z.; Xu, W.; Li, Q. Butenolide derivatives with α-glucosidase inhibitions from the deep-sea-derived fungus Aspergillus terreus YPGA10. Mar. Drugs, 2019, 17(6), 332. doi: 10.3390/md17060332 PMID: 31163670
  15. Tasnuva, S.T.; Qamar, U.A.; Ghafoor, K.; Sahena, F.; Jahurul, M.H.A.; Rukshana, A.H.; Juliana, M.J.; Al-Juhaimi, F.Y.; Jalifah, L.; Jalal, K.C.A.; Ali, M.E.; Zaidul, I.S.M. α-glucosidase inhibitors isolated from Mimosa pudica L. Nat. Prod. Res., 2019, 33(10), 1495-1499. doi: 10.1080/14786419.2017.1419224 PMID: 29281898
  16. Kumar, V.; Prakash, O.; Kumar, S.; Narwal, S. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29. doi: 10.4103/0973-7847.79096 PMID: 22096315
  17. Sun, Y.; Liu, J.; Li, L.; Gong, C.; Wang, S.; Yang, F.; Hua, H.; Lin, H. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg. Med. Chem. Lett., 2018, 28(3), 315-318. doi: 10.1016/j.bmcl.2017.12.049 PMID: 29295795
  18. Trang, N.T.H.; Tang, D.Y.Y.; Chew, K.W.; Linh, N.T.; Hoang, L.T.; Cuong, N.T.; Yen, H.T.; Thao, N.T.; Trung, N.T.; Show, P.L.; Tuyen, D.T. Discovery of α-glucosidase inhibitors from marine microorganisms: Optimization of culture conditions and medium composition. Mol. Biotechnol., 2021, 63(11), 1004-1015. doi: 10.1007/s12033-021-00362-3 PMID: 34185249
  19. Chaudhry, F.; Choudhry, S.; Huma, R.; Ashraf, M.; al-Rashida, M.; Munir, R.; Sohail, R.; Jahan, B.; Munawar, M.A.; Khan, M.A. Hetarylcoumarins: Synthesis and biological evaluation as potent α -glucosidase inhibitors. Bioorg. Chem., 2017, 73, 1-9. doi: 10.1016/j.bioorg.2017.05.009 PMID: 28521172
  20. Liu, Z.; Ma, S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem, 2017, 12(11), 819-829. doi: 10.1002/cmdc.201700216 PMID: 28498640
  21. Tafesse, T.B.; Bule, M.H.; Khoobi, M.; Faramarzi, M.A.; Abdollahi, M.; Amini, M. Coumarin-based scaffold as α-glucosidase inhibitory activity: Implication for the development of potent antidiabetic agents. Mini Rev. Med. Chem., 2020, 20(2), 134-151. doi: 10.2174/1389557519666190925162536 PMID: 31553294
  22. Mollazadeh, M.; Mohammadi-Khanaposhtani, M.; Valizadeh, Y.; Zonouzi, A.; Faramarzi, M.A.; Kiani, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Mahdavi, M.; Hajimiri, M.H. Novel coumarin containing dithiocarbamate derivatives as potent α-glucosidase inhibitors for management of type 2 diabetes. Med. Chem., 2021, 17(3), 264-272. doi: 10.2174/1573406416666200826101205 PMID: 32851964
  23. Barrett, M.L.; Udani, J.K. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutr. J., 2011, 10(1), 24. doi: 10.1186/1475-2891-10-24 PMID: 21414227
  24. Teng, H.; Chen, L. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3438-3448. doi: 10.1080/10408398.2015.1129309 PMID: 26854322
  25. Ahmed, M.U.; Ibrahim, A.; Dahiru, N.J.; Mohammed, H.S. Alpha amylase inhibitory potential and mode of inhibition of oils from Allium sativum (Garlic) and Allium cepa (Onion). Clin. Med. Insights Endocrinol. Diabetes, 2020, 13. doi: 10.1177/1179551420963106 PMID: 33088187
  26. Sangilimuthu, A.Y.; Sivaraman, T.; Chandrasekaran, R.; Sundaram, K.M.; Ekambaram, G. Screening chemical inhibitors for alpha-amylase from leaves extracts of Murraya koenigii (Linn.) and Aegle marmelos L. J. Complement. Integr. Med., 2021, 18(1), 51-57. doi: 10.1515/jcim-2019-0345 PMID: 32745070
  27. Bhatnagar, A.; Saini, R.; Dagar, P.; Mishra, A. Molecular modelling and in vitro studies of Daruharidra as a potent alpha-amylase inhibitor. J. Biomol. Struct. Dyn., 2023, 41(9), 3872-3883. doi: 10.1080/07391102.2022.2058093 PMID: 35412420
  28. Tamboli, E.; Bhatnagar, A.; Mishra, A. Alpha-amylase inhibitors from mycelium of an oyster mushroom. Prep. Biochem. Biotechnol., 2018, 48(8), 693-699. doi: 10.1080/10826068.2018.1487849 PMID: 30015540
  29. Sharma, P.; Joshi, T.; Joshi, T.; Chandra, S.; Tamta, S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J. Biomol. Struct. Dyn., 2021, 39(17), 6524-6538. doi: 10.1080/07391102.2020.1801507 PMID: 32748738
  30. Ali, M.; Khan, M.; Zaman, K.; Wadood, A.; Iqbal, M.; Alam, A.; Shah, S.; Yousaf, M.; Rafique, R.; Khan, K.M. Chalcones: As potent α-amylase enzyme inhibitors; synthesis, in vitro, and in silico studies. Med. Chem., 2021, 17(8), 903-912. doi: 10.2174/1573406416666200611103039 PMID: 32525781
  31. Pohl, N. Acyclic peptide inhibitors of amylases. Chem. Biol., 2005, 12(12), 1257-1258. doi: 10.1016/j.chembiol.2005.11.009 PMID: 16356842
  32. Roskar, I.; Molek, P.; Vodnik, M.; Stempelj, M.; Strukelj, B.; Lunder, M. Peptide modulators of alpha-glucosidase. J. Diabetes Investig., 2015, 6(6), 625-631. doi: 10.1111/jdi.12358 PMID: 26543535
  33. Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). J. Agric. Food Chem., 2018, 66(19), 4872-4882. doi: 10.1021/acs.jafc.8b00960 PMID: 29667406
  34. Evaristus, N.A.; Wan Abdullah, W.N.; Gan, C.Y. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes. Peptides, 2018, 102, 61-67. doi: 10.1016/j.peptides.2018.03.001 PMID: 29510154
  35. Awosika, T.O.; Aluko, R.E. Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int. J. Food Sci. Technol., 2019, 54(6), 2021-2034. doi: 10.1111/ijfs.14087
  36. Zhou, H.; Safdar, B.; Li, H.; Yang, L.; Ying, Z.; Liu, X. Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate. Food Chem., 2023, 403, 134434. doi: 10.1016/j.foodchem.2022.134434 PMID: 36358076
  37. Li, H.; Zhou, H.; Zhang, J.; Fu, X.; Ying, Z.; Liu, X. Proteinaceous α-amylase inhibitors: Purification, detection methods, types and mechanisms. Int. J. Food Prop., 2021, 24(1), 277-290. doi: 10.1080/10942912.2021.1876087
  38. Liu, L.; Chen, J.; Li, X. Novel peptides with α-glucosidase inhibitory activity from Changii Radix hydrolysates. Process Biochem., 2021, 111(Part 1), 200-206. doi: 10.1016/j.procbio.2021.08.019
  39. Liu, W.; Li, H.; Wen, Y.; Liu, Y.; Wang, J.; Sun, B. Molecular mechanism for the α-glucosidase inhibitory effect of wheat germ peptides. J. Agric. Food Chem., 2021, 69(50), 15231-15239. doi: 10.1021/acs.jafc.1c06098 PMID: 34874169
  40. Zhao, Q.; Wei, G.; Li, K.; Duan, S.; Ye, R.; Huang, A. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein. Lebensm. Wiss. Technol., 2022, 156, 113062. doi: 10.1016/j.lwt.2021.113062
  41. Baba, W.N.; Mudgil, P.; Kamal, H.; Kilari, B.P.; Gan, C.Y.; Maqsood, S. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins. J. Dairy Sci., 2021, 104(2), 1364-1377. doi: 10.3168/jds.2020-19271 PMID: 33309363
  42. Al-masri, I.M.; Mohammad, M.K.; Tahaa, M.O. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1061-1066. doi: 10.1080/14756360802610761 PMID: 19640223
  43. Guasch, L.; Ojeda, M.J.; González-Abuín, N.; Sala, E.; Cereto-Massagué, A.; Mulero, M.; Valls, C.; Pinent, M.; Ardévol, A.; Garcia-Vallvé, S.; Pujadas, G. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): Virtual screening and activity assays. PLoS One, 2012, 7(9), e44971. doi: 10.1371/journal.pone.0044971 PMID: 22984596
  44. Kaelin, D.E.; Smenton, A.L.; Eiermann, G.J.; He, H.; Leiting, B.; Lyons, K.A.; Patel, R.A.; Patel, S.B.; Petrov, A.; Scapin, G.; Wu, J.K.; Thornberry, N.A.; Weber, A.E.; Duffy, J.L. 4-Arylcyclohexylalanine analogs as potent, selective, and orally active inhibitors of dipeptidyl peptidase IV. Bioorg. Med. Chem. Lett., 2007, 17(21), 5806-5811. doi: 10.1016/j.bmcl.2007.08.049 PMID: 17851076
  45. Edmondson, S.D.; Mastracchio, A.; Cox, J.M.; Eiermann, G.J.; He, H.; Lyons, K.A.; Patel, R.A.; Patel, S.B.; Petrov, A.; Scapin, G.; Wu, J.K.; Xu, S.; Zhu, B.; Thornberry, N.A.; Roy, R.S.; Weber, A.E. Aminopiperidine-fused imidazoles as dipeptidyl peptidase-IV inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4097-4101. doi: 10.1016/j.bmcl.2009.06.011 PMID: 19539471
  46. Seshadri, K.G.; Kirubha, M.H.B. Gliptins: A new class of oral antidiabetic agents. Indian J. Pharm. Sci., 2009, 71(6), 608-614. doi: 10.4103/0250-474X.59541 PMID: 20376212
  47. Hopsu-Havu, V.K.; Glenner, G.G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide. Histochem. Cell Biol., 1966, 7(3), 197-201. doi: 10.1007/BF00577838 PMID: 5959122
  48. Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem., 1993, 214(3), 829-835. doi: 10.1111/j.1432-1033.1993.tb17986.x PMID: 8100523
  49. Capuano, A.; Sportiello, L.; Maiorino, M.I.; Rossi, F.; Giugliano, D.; Esposito, K. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin. Drug Des. Devel. Ther., 2013, 7, 989-1001. PMID: 24068868
  50. Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care, 2003, 26(10), 2929-2940. doi: 10.2337/diacare.26.10.2929 PMID: 14514604
  51. Vilsbøll, T.; Holst, J.J. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia, 2004, 47(3), 357-366. doi: 10.1007/s00125-004-1342-6 PMID: 14968296
  52. Mentlein, R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul. Pept., 1999, 85(1), 9-24. doi: 10.1016/S0167-0115(99)00089-0 PMID: 10588446
  53. Knudsen, L.B.; Pridal, L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. J. Pharmacol., 1996, 318(2-3), 429-435. doi: 10.1016/S0014-2999(96)00795-9 PMID: 9016935
  54. Juillerat-Jeanneret, L. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? J. Med. Chem., 2014, 57(6), 2197-2212. doi: 10.1021/jm400658e PMID: 24099035
  55. Weber, A.E. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J. Med. Chem., 2004, 47(17), 4135-4141. doi: 10.1021/jm030628v PMID: 15293982
  56. Lambeir, A.M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294. doi: 10.1080/713609354 PMID: 12892317
  57. Lamers, D.; Famulla, S.; Wronkowitz, N.; Hartwig, S.; Lehr, S.; Ouwens, D.M.; Eckardt, K.; Kaufman, J.M.; Ryden, M.; Müller, S.; Hanisch, F.G.; Ruige, J.; Arner, P.; Sell, H.; Eckel, J. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes, 2011, 60(7), 1917-1925. doi: 10.2337/db10-1707 PMID: 21593202
  58. Morrison, M.E.; Vijayasaradhi, S.; Engelstein, D.; Albino, A.P.; Houghton, A.N. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J. Exp. Med., 1993, 177(4), 1135-1143. doi: 10.1084/jem.177.4.1135 PMID: 8096237
  59. Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019. doi: 10.1210/er.2014-1035 PMID: 25216328
  60. Cordero, O.J.; Salgado, F.J.; Nogueira, M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother., 2009, 58(11), 1723-1747. doi: 10.1007/s00262-009-0728-1 PMID: 19557413
  61. Ahrén, B. Dipeptidyl peptidase-4 inhibitors: Clinical data and clinical implications. Diabetes Care, 2007, 30(6), 1344-1350. doi: 10.2337/dc07-0233 PMID: 17337494
  62. Fleischer, B. CD26: A surface protease involved in T-cell activation. Immunol. Today, 1994, 15(4), 180-184. doi: 10.1016/0167-5699(94)90316-6 PMID: 7911022
  63. Lessard, J.; Pelletier, M.; Biertho, L.; Biron, S.; Marceau, S.; Hould, F.S.; Lebel, S.; Moustarah, F.; Lescelleur, O.; Marceau, P.; Tchernof, A. Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: Fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS One, 2015, 10(3), e0122065. doi: 10.1371/journal.pone.0122065 PMID: 25816202
  64. Mest, H.J.; Mentlein, R. Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia, 2005, 48(4), 616-620. doi: 10.1007/s00125-005-1707-5 PMID: 15770466
  65. Meester, I.D.; Durinx, C.; Bal, G.; Proost, P.; Struyf, S.; Goossens, F.; Augustyns, K.; Scharpé, S. Natural substrates of dipeptidyl peptidase IV. Cellular peptidases in immune functions and diseases.In: Advances in Experimental Medicine and Biology; Springer: Boston, MA, 2002. doi: 10.1007/0-306-46826-3_7
  66. Olsen, C.; Wagtmann, N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene, 2002, 299(1-2), 185-193. doi: 10.1016/S0378-1119(02)01059-4 PMID: 12459266
  67. Röhrborn, D.; Wronkowitz, N.; Eckel, J. DPP4 in diabetes. Front. Immunol., 2015, 6, 386. doi: 10.3389/fimmu.2015.00386 PMID: 26284071
  68. Lin, Y.S.; Han, C.H.; Lin, S.Y.; Hou, W.C. Synthesized peptides from yam dioscorin hydrolysis in silico exhibit dipeptidyl peptidase-IV inhibitory activities and oral glucose tolerance improvements in normal mice. J. Agric. Food Chem., 2016, 64(33), 6451-6458. doi: 10.1021/acs.jafc.6b02403 PMID: 27499387
  69. Nongonierma, A.B.; FitzGerald, R.J. Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 2013, 39, 157-163. doi: 10.1016/j.peptides.2012.11.016 PMID: 23219487
  70. Lacroix, I.M.E.; Li-Chan, E.C.Y. Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J., 2012, 25(2), 97-102. doi: 10.1016/j.idairyj.2012.01.003
  71. Li-Chan, E.C.Y.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agric. Food Chem., 2012, 60(4), 973-978. doi: 10.1021/jf204720q PMID: 22225496
  72. Nongonierma, A.B.; Le Maux, S.; Dubrulle, C.; Barre, C.; FitzGerald, R.J. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. J. Cereal Sci., 2015, 65, 112-118. doi: 10.1016/j.jcs.2015.07.004
  73. Oseguera-Toledo, M.E.; Gonzalez de Mejia, E.; Amaya-Llano, S.L. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int., 2015, 76(Pt 3), 839-851. doi: 10.1016/j.foodres.2015.07.046 PMID: 28455070
  74. Nongonierma, A.B.; FitzGerald, R.J. Investigation of the potential of hemp, pea, rice and soy protein hydrolysates as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Dig., 2015, 6(1-3), 19-29. doi: 10.1007/s13228-015-0039-2
  75. Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G.M.; Díaz-Gois, A. González de, M.E.; Barba de la Rosa, A.P. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem., 2013, 136(2), 758-764. doi: 10.1016/j.foodchem.2012.08.032 PMID: 23122124
  76. Harnedy, P.A.; FitzGerald, R.J. In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J. Appl. Phycol., 2013, 25(6), 1793-1803. doi: 10.1007/s10811-013-0017-4
  77. Thoma, R.; Löffler, B.; Stihle, M.; Huber, W.; Ruf, A.; Hennig, M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure, 2003, 11(8), 947-959. doi: 10.1016/S0969-2126(03)00160-6 PMID: 12906826
  78. Hiramatsu, H.; Yamamoto, A.; Kyono, K.; Higashiyama, Y.; Fukushima, C.; Shima, H.; Sugiyama, S.; Inaka, K.; Shimizu, R. The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Biol. Chem., 2004, 385(6), 561-564. doi: 10.1515/BC.2004.068 PMID: 15255191
  79. Bednarczyk, J.L.; Carroll, S.M.; Marin, C.; McIntyre, B.W. Triggering of the proteinase dipeptidyl peptidase IV (CD26) amplifies human T lymphocyte proliferation. J. Cell. Biochem., 1991, 46(3), 206-218. doi: 10.1002/jcb.240460304 PMID: 1723066
  80. Ajami, K.; Abbott, C.A.; Obradovic, M.; Gysbers, V.; Kähne, T.; McCaughan, G.W.; Gorrell, M.D. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry, 2003, 42(3), 694-701. doi: 10.1021/bi026846s PMID: 12534281
  81. Rasmussen, H.B.; Branner, S.; Wiberg, F.C.; Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol., 2003, 10(1), 19-25. doi: 10.1038/nsb882 PMID: 12483204
  82. Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun., 2013, 434(2), 191-196. doi: 10.1016/j.bbrc.2013.03.010 PMID: 23501107
  83. Abbott, C.A.; McCaughan, G.W.; Gorrell, M.D. Two highly conserved glutamic acid residues in the predicted β propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett., 1999, 458(3), 278-284. doi: 10.1016/S0014-5793(99)01166-7 PMID: 10570924
  84. Zhang, X.; Wang, R.; Cheng, C.; Zhang, Y.; Ma, Y.; Lu, W. Identification of two novel dipeptidyl peptidase-IV inhibitory peptides from sheep whey protein and inhibition mechanism revealed by molecular docking. Food Biosci., 2022, 48, 101733. doi: 10.1016/j.fbio.2022.101733
  85. Luo, F.; Fu, Y.; Ma, L.; Dai, H.; Wang, H.; Chen, H.; Zhu, H.; Yu, Y.; Hou, Y.; Zhang, Y. Exploration of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from silkworm pupae (Bombyx mori) proteins based on in silico and in vitro assessments. J. Agric. Food Chem., 2022, 70(12), 3862-3871. doi: 10.1021/acs.jafc.1c08225 PMID: 35230117
  86. Gu, H.; Gao, J.; Shen, Q.; Gao, D.; Wang, Q.; Tangyu, M.; Mao, X. Dipeptidyl peptidase-IV inhibitory activity of millet protein peptides and the related mechanisms revealed by molecular docking. Lebensm. Wiss. Technol., 2021, 138, 110587. doi: 10.1016/j.lwt.2020.110587
  87. Tan, J.; Yang, J.; Zhou, X.; Hamdy, A.M.; Zhang, X.; Suo, H.; Zhang, Y.; Li, N.; Song, J. Tenebrio molitor proteins-derived DPP-4 inhibitory peptides: Preparation, identification, and molecular binding mechanism. Foods, 2022, 11(22), 3626. doi: 10.3390/foods11223626 PMID: 36429217
  88. Zhao, W.; Zhang, D.; Yu, Z.; Ding, L.; Liu, J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods, 2020, 64, 103649. doi: 10.1016/j.jff.2019.103649
  89. Mohd Salim, M.A.S.; Gan, C.Y. Dual-function peptides derived from egg white ovalbumin: Bioinformatics identification with validation using in vitro assay. J. Funct. Foods, 2020, 64, 103618. doi: 10.1016/j.jff.2019.103618
  90. Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I.; Allergen, F.P. Allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014, 30(6), 846-851. doi: 10.1093/bioinformatics/btt619 PMID: 24167156
  91. Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci., 2019, 20(23), 5978. doi: 10.3390/ijms20235978 PMID: 31783634
  92. Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr., 2020, 8(12), 6320-6337. doi: 10.1002/fsn3.1987 PMID: 33312519
  93. You, H.; Wu, T.; Wang, W.; Li, Y.; Liu, X.; Ding, L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res. Int., 2022, 156, 111176. doi: 10.1016/j.foodres.2022.111176 PMID: 35651037
  94. You, H.; Zhang, Y.; Wu, T.; Li, J.; Wang, L.; Yu, Z.; Liu, J.; Liu, X.; Ding, L. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. Lebensm. Wiss. Technol., 2022, 160, 113255. doi: 10.1016/j.lwt.2022.113255
  95. Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wu, J.; Jiang, D.; Ju, X.; Wang, L. Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. J. Agric. Food Chem., 2019, 67(13), 3679-3690. doi: 10.1021/acs.jafc.9b01069 PMID: 30854852
  96. Mojica, L.; Luna-Vital, D.A.; González de Mejía, E. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J. Sci. Food Agric., 2017, 97(8), 2401-2410. doi: 10.1002/jsfa.8053 PMID: 27664971
  97. Hatanaka, T.; Inoue, Y.; Arima, J.; Kumagai, Y.; Usuki, H.; Kawakami, K.; Kimura, M.; Mukaihara, T. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem., 2012, 134(2), 797-802. doi: 10.1016/j.foodchem.2012.02.183 PMID: 23107693
  98. Wang, W.; Liu, X.; Li, Y.; You, H.; Yu, Z.; Wang, L.; Liu, X.; Ding, L. Identification and characterization of dipeptidyl peptidase-iv inhibitory peptides from oat proteins. Foods, 2022, 11(10), 1406. doi: 10.3390/foods11101406 PMID: 35626976
  99. Wang, F.; Yu, G.; Zhang, Y.; Zhang, B.; Fan, J. Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum Vulgare trifurcatum (L.) Trofim) proteins. J. Agric. Food Chem., 2015, 63(43), 9543-9549. doi: 10.1021/acs.jafc.5b04016 PMID: 26468909
  100. Zan, R.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H.; Zhu, L. Identification of novel dipeptidyl peptidase-iv inhibitory peptides in chickpea protein hydrolysates. J. Agric. Food Chem., 2023, 71(21), 8211-8219. doi: 10.1021/acs.jafc.3c00603 PMID: 37191584
  101. Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: in vitro biochemical screening and in silico molecular modeling study. J. Agric. Food Chem., 2016, 64(51), 9601-9606. doi: 10.1021/acs.jafc.6b04041 PMID: 27983830
  102. Wang, F.; Zhang, Y.; Yu, T.; He, J.; Cui, J.; Wang, J.; Cheng, X.; Fan, J. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in CaCo2 cells. J. Funct. Foods, 2018, 42, 12-20. doi: 10.1016/j.jff.2017.12.061
  103. Sato, K.; Miyasaka, S.; Tsuji, A.; Tachi, H. Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chem., 2018, 261, 51-56. doi: 10.1016/j.foodchem.2018.04.029 PMID: 29739605
  104. Lin, Y.S.; Han, C.H.; Lin, S.Y.; Hou, W.C. Synthesized peptides from yam dioscorin hydrolysis in silico exhibit dipeptidyl peptidase- IV inhibitory activities and oral glucose tolerance improvements in normal mice. J. Agric. Food Chem, 2016, 64(33), 6451-6458. doi: 10.1021/acs.jafc.6b02403 PMID: 27499387
  105. Chandrasekaran, S.; Luna-Vital, D.; de Mejia, E.G. Identification and comparison of peptides from chickpea protein hydrolysates using either bromelain or gastrointestinal enzymes and their relationship with markers of type 2 diabetes and bitterness. Nutrients, 2020, 12(12), 3843. doi: 10.3390/nu12123843 PMID: 33339265
  106. Umezawa, H.; Aoyagi, T.; Ogawa, K.; Naganawa, H.; Hamada, M.; Takeuchi, T. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J. Antibiot., 1984, 37(4), 422-425. doi: 10.7164/antibiotics.37.422 PMID: 6427168
  107. Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem., 2015, 172, 400-406. doi: 10.1016/j.foodchem.2014.09.083 PMID: 25442570
  108. Nongonierma, A.B.; Cadamuro, C.; Le Gouic, A.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem., 2019, 279, 70-79. doi: 10.1016/j.foodchem.2018.11.142 PMID: 30611514
  109. Zhang, Y.; Chen, R.; Ma, H.; Chen, S. Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC-MS/MS. J. Agric. Food Chem., 2015, 63(40), 8819-8828. doi: 10.1021/acs.jafc.5b03062 PMID: 26323964
  110. Lacroix, I.M.E.; Li-Chan, E.C.Y. Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides, 2014, 54, 39-48. doi: 10.1016/j.peptides.2014.01.002 PMID: 24440459
  111. Jia, C.; Hussain, N.; Joy Ujiroghene, O.; Pang, X.; Zhang, S.; Lu, J.; Liu, L.; Lv, J. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chem., 2020, 318, 126333. doi: 10.1016/j.foodchem.2020.126333 PMID: 32151919
  112. Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem., 2013, 141(2), 1072-1077. doi: 10.1016/j.foodchem.2013.03.056 PMID: 23790888
  113. Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J., 2012, 22(1), 24-30. doi: 10.1016/j.idairyj.2011.08.002
  114. Nongonierma, A.B.; FitzGerald, R.J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. J. Funct. Foods, 2013, 5(4), 1909-1917. doi: 10.1016/j.jff.2013.09.012
  115. Song, J.J.; Wang, Q.; Du, M.; Ji, X.M.; Mao, X.Y. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates. J. Dairy Sci., 2017, 100(9), 6885-6894. doi: 10.3168/jds.2016-11828 PMID: 28711271
  116. Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; Fitz-Gerald, R.J. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem., 2018, 244, 340-348. doi: 10.1016/j.foodchem.2017.10.033 PMID: 29120791
  117. Zhang, Y.; Chen, R.; Zuo, F.; Ma, H.; Zhang, Y.; Chen, S. Comparison of dipeptidyl peptidase IV-inhibitory activity of peptides from bovine and caprine milk casein by in silico and in vitro analyses. Int. Dairy J., 2016, 53, 37-44. doi: 10.1016/j.idairyj.2015.10.001
  118. Ashok, A.; Brijesha, N.; Aparna, H.S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. Eur. J. Med. Chem., 2019, 180, 99-110. doi: 10.1016/j.ejmech.2019.07.009 PMID: 31301567
  119. Jin, R.; Teng, X.; Shang, J.; Wang, D.; Liu, N. Identification of novel DPP-IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Res. Int., 2020, 133, 109161. doi: 10.1016/j.foodres.2020.109161 PMID: 32466942
  120. Jin, Y.; Yan, J.; Yu, Y.; Qi, Y. Screening and identification of DPP-IV inhibitory peptides from deer skin hydrolysates by an integrated approach of LC-MS/MS and in silico analysis. J. Funct. Foods, 2015, 18, 344-357. doi: 10.1016/j.jff.2015.07.015
  121. Nong, N.T.P.; Chen, Y.K.; Shih, W.L.; Hsu, J.L. Characterization of novel dipeptidyl peptidase-iv inhibitory peptides from soft-shelled turtle yolk hydrolysate using orthogonal bioassay-guided fractionations coupled with in vitro and in silico study. Pharmaceuticals, 2020, 13(10), 308. doi: 10.3390/ph13100308 PMID: 33066488
  122. Hong, H.; Zheng, Y.; Song, S.; Zhang, Y.; Zhang, C.; Liu, J.; Luo, Y. Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. Food Biosci., 2020, 38, 100748. doi: 10.1016/j.fbio.2020.100748
  123. Martini, S.; Conte, A.; Tagliazucchi, D. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. J. Proteomics, 2019, 208, 103500. doi: 10.1016/j.jprot.2019.103500 PMID: 31454557
  124. Yu, Z.; Yin, Y.; Zhao, W.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chem., 2011, 129(4), 1376-1382. doi: 10.1016/j.foodchem.2011.05.067
  125. Zambrowicz, A.; Pokora, M.; Setner, B.; Dąbrowska, A.; Szołtysik, M.; Babij, K.; Szewczuk, Z.; Trziszka, T.; Lubec, G.; Chrzanowska, J. Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization. Amino Acids, 2015, 47(2), 369-380. doi: 10.1007/s00726-014-1869-x PMID: 25408464
  126. Wang, T.Y.; Hsieh, C.H.; Hung, C.C.; Jao, C.L.; Chen, M.C.; Hsu, K.C. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish. J. Funct. Foods, 2015, 19, 330-340. doi: 10.1016/j.jff.2015.09.037
  127. Huang, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides, 2012, 35(1), 114-121. doi: 10.1016/j.peptides.2012.03.006 PMID: 22450467
  128. Zhang, Y.; Chen, R.; Chen, X.; Zeng, Z.; Ma, H.; Chen, S. Dipeptidyl peptidase IV-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix Val.) proteins. J. Agric. Food Chem., 2016, 64(4), 831-839. doi: 10.1021/acs.jafc.5b05429 PMID: 26758401
  129. Zhang, C.; Zhang, Y.; Wang, Z.; Chen, S.; Luo, Y. Production and identification of antioxidant and angiotensin-converting enzyme inhibition and dipeptidyl peptidase IV inhibitory peptides from bighead carp (Hypophthalmichthys nobilis) muscle hydrolysate. J. Funct. Foods, 2017, 35, 224-235. doi: 10.1016/j.jff.2017.05.032
  130. Zhao, W.; Zhang, D.; Yu, Z.; Ding, L.; Liu, J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods, 2020, 64, 103649.
  131. Gallego, M.; Aristoy, M.C.; Toldrá, F. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Sci., 2014, 96(2), 757-761. doi: 10.1016/j.meatsci.2013.09.014 PMID: 24200567
  132. Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; Alashi, M.A.; Aluko, R.E.; FitzGerald, R.J. Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res. Int., 2017, 100(Pt 1), 112-120. doi: 10.1016/j.foodres.2017.06.065 PMID: 28873669
  133. Nongonierma, A.B.; FitzGerald, R.J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food Funct., 2013, 4(12), 1843-1849. doi: 10.1039/c3fo60262a PMID: 24193022
  134. Lan, V.T.T.; Ito, K.; Ito, S.; Kawarasaki, Y. Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV. Peptides, 2014, 54, 166-170. doi: 10.1016/j.peptides.2014.01.027 PMID: 24512990
  135. Li-Chan, E.C.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agricul. Food Chem., 2012, 60(4), 973-978.
  136. Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem., 2013, 141(2), 1072-1077.
  137. Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Inter. Dairy J., 2012, 22(1), 24-30.
  138. Tulipano, G.; Sibilia, V.; Caroli, A.M.; Cocchi, D. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides, 2011, 32(4), 835-838. doi: 10.1016/j.peptides.2011.01.002 PMID: 21256171
  139. Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol. Metab., 2021, 46, 101102. doi: 10.1016/j.molmet.2020.101102 PMID: 33068776
  140. Tajima, N.; Kadowaki, T.; Okamoto, T.; Sato, A.; Okuyama, K.; Minamide, T.; Arjona, F.J.C. Sitagliptin added to voglibose monotherapy improves glycemic control in patients with type 2 diabetes. J. Diabetes Investig., 2013, 4(6), 595-604. doi: 10.1111/jdi.12116 PMID: 24843714
  141. Horikawa, Y.; Enya, M.; Iizuka, K.; Chen, G.Y.; Kawachi, S.; Suwa, T.; Takeda, J. Synergistic effect of α-glucosidase inhibitors and dipeptidyl peptidase 4 inhibitor treatment. J. Diabetes Investig., 2011, 2(3), 200-203. doi: 10.1111/j.2040-1124.2010.00081.x PMID: 24843484
  142. Charbonnel, B.; Karasik, A.; Liu, J.; Wu, M.; Meininger, G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care, 2006, 29(12), 2638-2643. doi: 10.2337/dc06-0706 PMID: 17130197
  143. Yang, H.K.; Lee, S.H.; Shin, J.; Choi, Y.H.; Ahn, Y.B.; Lee, B.W.; Rhee, E.J.; Min, K.W.; Yoon, K.H. Acarbose add-on therapy in patients with type 2 diabetes mellitus with metformin and sitagliptin failure: A multicenter, randomized, double-blind, placebo-controlled study. Diabetes Metab. J., 2019, 43(3), 287-301. doi: 10.4093/dmj.2018.0054 PMID: 30604599
  144. Huang, S.L.; Hung, C.C.; Jao, C.L.; Tung, Y.S.; Hsu, K.C. Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats. J. Funct. Foods, 2014, 11, 235-242. doi: 10.1016/j.jff.2014.09.010
  145. Aart, V.A.; Catharina, M.J.; Zeeland-Wolbers, V.; Maria, L.A.; Gilst, V.; Hendrikus, W. Egg protein hydrolysates. WO Patent 2009/128713 2009.
  146. Uchida, M.; Ohshiba, Y.; Mogami, O. Novel dipeptidyl peptidase-4-inhibiting peptide derived from β-lactoglobulin. J. Pharmacol. Sci., 2011, 117(1), 63-66. doi: 10.1254/jphs.11089SC PMID: 21836374
  147. Hira, T.; Mochida, T.; Miyashita, K.; Hara, H. GLP-1 secretion is enhanced directly in the ileum but indirectly in the duodenum by a newly identified potent stimulator, zein hydrolysate, in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(4), G663-G671. doi: 10.1152/ajpgi.90635.2008 PMID: 19661152
  148. Mochida, T.; Hira, T.; Hara, H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology, 2010, 151(7), 3095-3104. doi: 10.1210/en.2009-1510 PMID: 20410194
  149. Power, O.; Hallihan, A.; Jakeman, P. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids, 2009, 37(2), 333-339. doi: 10.1007/s00726-008-0156-0 PMID: 18679613
  150. Istrate, D.; Crisan, L. Natural compounds as DPP-4 inhibitors: 3D-similarity search, ADME toxicity, and molecular docking approaches. Symmetry, 2022, 14(9), 1842. doi: 10.3390/sym14091842
  151. Sajal, H.; Patil, S.M.; Raj, R.; Shbeer, A.M.; Ageel, M.; Ramu, R. Computer-aided screening of phytoconstituents from ocimum tenuiflorum against diabetes mellitus targeting DPP4 inhibition: A combination of molecular docking, molecular dynamics, and pharmacokinetics approaches. Molecules, 2022, 27(16), 5133. doi: 10.3390/molecules27165133 PMID: 36014373

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024