Soluble Factors Associated with Denervation-induced Skeletal Muscle Atrophy
- 作者: Rodríguez M.1, Cabello-Verrugio C.1
-
隶属关系:
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello
- 期: 卷 25, 编号 3 (2024)
- 页面: 189-199
- 栏目: Life Sciences
- URL: https://rjsvd.com/1389-2037/article/view/645562
- DOI: https://doi.org/10.2174/0113892037189827231018092036
- ID: 645562
如何引用文章
全文:
详细
Skeletal muscle tissue has the critical function of mechanical support protecting the body. In addition, its functions are strongly influenced by the balanced synthesis and degradation processes of structural and regulatory proteins. The inhibition of protein synthesis and/or the activation of catabolism generally determines a pathological state or condition called muscle atrophy, a reduction in muscle mass that results in partial or total loss of function. It has been established that many pathophysiological conditions can cause a decrease in muscle mass. Skeletal muscle innervation involves stable and functional neural interactions with muscles via neuromuscular junctions and is essential for maintaining normal muscle structure and function. Loss of motor innervation induces rapid skeletal muscle fiber degeneration with activation of atrophy-related signaling and subsequent disassembly of sarcomeres, altering normal muscle function. After denervation, an inflammation stage is characterized by the increased expression of pro-inflammatory cytokines that determine muscle atrophy. In this review, we highlighted the impact of some soluble factors on the development of muscle atrophy by denervation.
作者简介
Marianny Rodríguez
Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello
Email: info@benthamscience.net
Claudio Cabello-Verrugio
Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Yin, L.; Li, N.; Jia, W.; Wang, N.; Liang, M.; Yang, X.; Du, G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res., 2021, 172, 105807. doi: 10.1016/j.phrs.2021.105807 PMID: 34389456
- Chemello, F.; Bean, C.; Cancellara, P.; Laveder, P.; Reggiani, C.; Lanfranchi, G. Microgenomic analysis in skeletal muscle: Expression signatures of individual fast and slow myofibers. PLoS One, 2011, 6(2), e16807. doi: 10.1371/journal.pone.0016807 PMID: 21364935
- Marzuca-Nassr, G.N. , 2019.
- Sharlo, K.; Tyganov, S.A.; Tomilovskaya, E.; Popov, D.V.; Saveko, A.A.; Shenkman, B.S. Effects of various muscle disuse states and countermeasures on muscle molecular signaling. Int. J. Mol. Sci., 2021, 23(1), 468. doi: 10.3390/ijms23010468 PMID: 35008893
- Ramírez, Ramírez, C. Una visión desde la biología molecular a una deficiencia comúnmente encontrada en la práctica del fisioterapeuta: la atrofia muscular. Revista de la Universidad Industrial de Santander Salud., 2012, 44(3), 31-39.
- Iyer, S.R.; Shah, S.B.; Lovering, R.M. The neuromuscular junction: Roles in aging and neuromuscular disease. Int. J. Mol. Sci., 2021, 22(15), 8058. doi: 10.3390/ijms22158058 PMID: 34360831
- Kostrominova, T.Y. Skeletal Muscle Denervation: Past, Present and Future; MDPI, 2022, p. 7489.
- Burns, T.M.; Graham, C.D.; Rose, M.R.; Simmons, Z. Quality of life and measures of quality of life in patients with neuromuscular disorders. Muscle Nerve, 2012, 46(1), 9-25. doi: 10.1002/mus.23245 PMID: 22644588
- Ware, F., Jr; Bennett, A.L.; McIntyre, A.R. Membrane resting potential of denervated mammalian skeletal muscle measured in vivo. Am. J. Physiol., 1954, 177(1), 115-118. doi: 10.1152/ajplegacy.1954.177.1.115 PMID: 13148353
- Ehmsen, J.T.; Höke, A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp. Neurol., 2020, 331, 113379. doi: 10.1016/j.expneurol.2020.113379 PMID: 32533969
- Shen, Y.; Zhang, R.; Xu, L.; Wan, Q.; Zhu, J.; Gu, J.; Huang, Z.; Ma, W.; Shen, M.; Ding, F.; Sun, H. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front. Physiol., 2019, 10, 1298. doi: 10.3389/fphys.2019.01298 PMID: 31681010
- Tomasi, M.L.; Ramani, K.; Ryoo, M.; Cossu, C.; Floris, A.; Murray, B.J.; Iglesias-Ara, A.; Spissu, Y.; Mavila, N. SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease. FASEB J., 2018, 32(6), 3278-3288. doi: 10.1096/fj.201701124R PMID: 29401608
- Costamagna, D; Costelli, P; Sampaolesi, M; Penna, F, 2015, Role of inflammation in muscle homeostasis and myogenesis. Mediators Inflamm., 2015, 2015-805172. doi: 10.1155/2015/805172
- Wu, C.; Tang, L.; Ni, X.; Xu, T.; Fang, Q.; Xu, L.; Ma, W.; Yang, X.; Sun, H. Salidroside attenuates denervation-induced skeletal muscle atrophy through negative regulation of pro-inflammatory cytokine. Front. Physiol., 2019, 10, 665. doi: 10.3389/fphys.2019.00665 PMID: 31293430
- Yamauchi, Y.; Ferdousi, F.; Fukumitsu, S.; Isoda, H. Maslinic acid attenuates denervation-induced loss of skeletal muscle mass and strength. Nutrients, 2021, 13(9), 2950. doi: 10.3390/nu13092950 PMID: 34578826
- Chen, X.; Li, M.; Chen, B.; Wang, W.; Zhang, L.; Ji, Y.; Chen, Z.; Ni, X.; Shen, Y.; Sun, H. Transcriptome sequencing and analysis reveals the molecular mechanism of skeletal muscle atrophy induced by denervation. Ann. Transl. Med., 2021, 9(8), 697. doi: 10.21037/atm-21-1230 PMID: 33987395
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.M.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; Pan, Z.Q.; Valenzuela, D.M.; DeChiara, T.M.; Stitt, T.N.; Yancopoulos, G.D.; Glass, D.J. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 2001, 294(5547), 1704-1708. doi: 10.1126/science.1065874 PMID: 11679633
- Boutari, C.; Mantzoros, C.S. Decreasing lean body mass with age: Challenges and opportunities for novel therapies. Endocrinol. Metab. (Seoul), 2017, 32(4), 422-425. doi: 10.3803/EnM.2017.32.4.422 PMID: 29271616
- Raso, V.; Greve, JMDA.; Polito, MD. Pollock: Fisiologia clínica do exercício (2013) 2017. Available From: https://repositorio.usp.br/item/002683087
- Draznin, B. Molecular mechanisms of insulin resistance. Insulin resistance. Springer, 2020, 55-66.
- Cai, D.; Frantz, J.D.; Tawa, N.E., Jr; Melendez, P.A.; Oh, B.C.; Lidov, H.G.W.; Hasselgren, P.O.; Frontera, W.R.; Lee, J.; Glass, D.J.; Shoelson, S.E. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell, 2004, 119(2), 285-298. doi: 10.1016/j.cell.2004.09.027 PMID: 15479644
- Cadena, S.M.; Zhang, Y.; Fang, J.; Brachat, S.; Kuss, P.; Giorgetti, E.; Stodieck, L.S.; Kneissel, M.; Glass, D.J. Skeletal muscle in MuRF1 null mice is not spared in low-gravity conditions, indicating atrophy proceeds by unique mechanisms in space. Sci. Rep., 2019, 9(1), 9397. doi: 10.1038/s41598-019-45821-9 PMID: 31253821
- Paul, P.K.; Bhatnagar, S.; Mishra, V.; Srivastava, S.; Darnay, B.G.; Choi, Y.; Kumar, A. The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol. Cell. Biol., 2012, 32(7), 1248-1259. doi: 10.1128/MCB.06351-11 PMID: 22290431
- Beehler, B.C.; Sleph, P.G.; Benmassaoud, L.; Grover, G.J. Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation. Exp. Biol. Med. (Maywood), 2006, 231(3), 335-341. doi: 10.1177/153537020623100315 PMID: 16514182
- Kimura, N.; Kumamoto, T.; Oniki, T.; Nomura, M.; Nakamura, K.; Abe, Y.; Hazama, Y.; Ueyama, H. Role of ubiquitin-proteasome proteolysis in muscle fiber destruction in experimental chloroquine-induced myopathy. Muscle Nerve, 2009, 39(4), 521-528. doi: 10.1002/mus.21223 PMID: 19296457
- McGrath, M.J.; Eramo, M.J.; Gurung, R.; Sriratana, A.; Gehrig, S.M.; Lynch, G.S.; Lourdes, S.R.; Koentgen, F.; Feeney, S.J.; Lazarou, M.; McLean, C.A.; Mitchell, C.A. Defective lysosome reformation during autophagy causes skeletal muscle disease. J. Clin. Invest., 2021, 131(1), e135124. doi: 10.1172/JCI135124 PMID: 33119550
- Masiero, E.; Agatea, L.; Mammucari, C.; Blaauw, B.; Loro, E.; Komatsu, M.; Metzger, D.; Reggiani, C.; Schiaffino, S.; Sandri, M. Autophagy is required to maintain muscle mass. Cell Metab., 2009, 10(6), 507-515. doi: 10.1016/j.cmet.2009.10.008 PMID: 19945408
- Zhao, J.; Brault, J.J.; Schild, A.; Cao, P.; Sandri, M.; Schiaffino, S.; Lecker, S.H.; Goldberg, A.L. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab., 2007, 6(6), 472-483. doi: 10.1016/j.cmet.2007.11.004 PMID: 18054316
- Mammucari, C.; Milan, G.; Romanello, V.; Masiero, E.; Rudolf, R.; Del Piccolo, P.; Burden, S.J.; Di Lisi, R.; Sandri, C.; Zhao, J.; Goldberg, A.L.; Schiaffino, S.; Sandri, M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab., 2007, 6(6), 458-471. doi: 10.1016/j.cmet.2007.11.001 PMID: 18054315
- Ganassi, M.; Zammit, P.S. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies. Eur. J. Transl. Myol., 2022, 32(1), 10064. doi: 10.4081/ejtm.2022.10064 PMID: 35302338
- Seddon, H.J. A Classification of Nerve Injuries. BMJ, 1942, 2(4260), 237-239. doi: 10.1136/bmj.2.4260.237 PMID: 20784403
- Aydin, M.A.; Mackinnon, S.E.; Gu, X.M.; Kobayashi, J.; Kuzon, W.M., Jr. Force deficits in skeletal muscle after delayed reinnervation. Plast. Reconstr. Surg., 2004, 113(6), 1712-1718. doi: 10.1097/01.PRS.0000118049.93654.CA PMID: 15114133
- Wong, A.; Pomerantz, J.H. The role of muscle stem cells in regeneration and recovery after denervation: A review. Plast. Reconstr. Surg., 2019, 143(3), 779-788. doi: 10.1097/PRS.0000000000005370 PMID: 30817650
- Carraro, U.; Boncompagni, S.; Gobbo, V.; Rossini, K.; Zampieri, S.; Mosole, S.; Ravara, B.; Nori, A.; Stramare, R.; Ambrosio, F.; Piccione, F.; Masiero, S.; Vindigni, V.; Gargiulo, P.; Protasi, F.; Kern, H.; Pond, A.; Marcante, A. Persistent muscle fiber regeneration in long term denervation. Past, present, future. Eur. J. Transl. Myol., 2015, 25(2), 77. doi: 10.4081/bam.2015.2.77 PMID: 26913148
- Faroni, A.; Mobasseri, S.A.; Kingham, P.J.; Reid, A.J. Peripheral nerve regeneration: Experimental strategies and future perspectives. Adv. Drug Deliv. Rev., 2015, 82-83, 160-167. doi: 10.1016/j.addr.2014.11.010 PMID: 25446133
- Huang, X.; Jiang, J.; Xu, J. Denervation-related neuromuscular junction changes: From degeneration to regeneration. Front. Mol. Neurosci., 2022, 14, 810919. doi: 10.3389/fnmol.2021.810919 PMID: 35282655
- Lu, D.X.; Huang, S.K.; Carlson, B.M. Electron microscopic study of long-term denervated rat skeletal muscle. Anat. Rec., 1997, 248(3), 355-365. doi: 10.1002/(SICI)1097-0185(199707)248:33.0.CO;2-O PMID: 9214553
- Chang, H.; Hwang, S.; Lim, S.; Eo, S.; Minn, K.W.; Hong, K.Y. Long-term fate of denervated skeletal muscle after microvascular flap transfer. Ann. Plast. Surg., 2018, 80(6), 644-647. doi: 10.1097/SAP.0000000000001397 PMID: 29553977
- Rebolledo, DL; González, D; Faundez-Contreras, J; Contreras, O; Vio, CP; Murphy-Ullrich, JE Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol., 2019, 82, 20-37.
- Lieber, R.L.; Ward, S.R. Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am. J. Physiol. Cell Physiol., 2013, 305(3), C241-C252. doi: 10.1152/ajpcell.00173.2013 PMID: 23761627
- Das, D.K.; Graham, Z.A.; Cardozo, C.P. Myokines in skeletal muscle physiology and metabolism: Recent advances and future perspectives. Acta Physiol. (Oxf.), 2020, 228(2), e13367. doi: 10.1111/apha.13367 PMID: 31442362
- Sharma, M.; McFarlane, C.; Kambadur, R.; Kukreti, H.; Bonala, S.; Srinivasan, S. Myostatin: Expanding horizons. IUBMB Life, 2015, 67(8), 589-600. doi: 10.1002/iub.1392 PMID: 26305594
- Lee, S.J.; McPherron, A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 9306-9311. doi: 10.1073/pnas.151270098 PMID: 11459935
- Han, H.Q.; Zhou, X.; Mitch, W.E.; Goldberg, A.L. Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int. J. Biochem. Cell Biol., 2013, 45(10), 2333-2347. doi: 10.1016/j.biocel.2013.05.019 PMID: 23721881
- Sartori, R.; Milan, G.; Patron, M.; Mammucari, C.; Blaauw, B.; Abraham, R.; Sandri, M. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol., 2009, 296(6), C1248-C1257. doi: 10.1152/ajpcell.00104.2009 PMID: 19357234
- Lee, S.J.; Reed, L.A.; Davies, M.V.; Girgenrath, S.; Goad, M.E.P.; Tomkinson, K.N.; Wright, J.F.; Barker, C.; Ehrmantraut, G.; Holmstrom, J.; Trowell, B.; Gertz, B.; Jiang, M.S.; Sebald, S.M.; Matzuk, M.; Li, E.; Liang, L.; Quattlebaum, E.; Stotish, R.L.; Wolfman, N.M. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 18117-18122. doi: 10.1073/pnas.0505996102 PMID: 16330774
- De la Torre Álamo, M.M. El papel de los microRNAs en la regeneración muscular. 2021. Available From: https://crea.ujaen.es/handle/10953.1/14539
- Mikolajczyk, T.P.; Szczepaniak, P.; Vidler, F.; Maffia, P.; Graham, G.J.; Guzik, T.J. Role of inflammatory chemokines in hypertension. Pharmacol. Ther., 2021, 223, 107799. doi: 10.1016/j.pharmthera.2020.107799 PMID: 33359600
- Wagner, K.R.; McPherron, A.C.; Winik, N.; Lee, S.J. Loss of myostatin attenuates severity of muscular dystrophy inmdx mice. Ann. Neurol., 2002, 52(6), 832-836. doi: 10.1002/ana.10385 PMID: 12447939
- Crone, M.; Mah, J.K. Current and emerging therapies for duchenne muscular dystrophy. Curr. Treat. Options Neurol., 2018, 20(8), 31. doi: 10.1007/s11940-018-0513-6 PMID: 29936551
- Cannon, J.G.; Fielding, R.A.; Fiatarone, M.A.; Orencole, S.F.; Dinarello, C.A.; Evans, W.J. Increased interleukin 1 beta in human skeletal muscle after exercise. Am. J. Physiol., 1989, 257(2 Pt 2), R451-R455. PMID: 2669532
- Aneas, I.; Decker, D.C.; Howard, C.L.; Sobreira, D.R. Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat. Commun., 2021, 12(1), 6115. doi: 10.1038/s41467-021-26347-z
- You, Z.; Huang, X.; Xiang, Y.; Dai, J.; Xu, L.; Jiang, J.; Xu, J. Ablation of NLRP3 inflammasome attenuates muscle atrophy via inhibiting pyroptosis, proteolysis and apoptosis following denervation. Theranostics, 2023, 13(1), 374-390. doi: 10.7150/thno.74831 PMID: 36593964
- Yi, X.; Tao, J.; Qian, Y.; Feng, F.; Hu, X.; Xu, T.; Jin, H.; Ruan, H.; Zheng, H.F.; Tong, P. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Front. Pharmacol., 2022, 13, 1056460. doi: 10.3389/fphar.2022.1056460 PMID: 36618945
- Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine, 2022, 156, 155891. doi: 10.1016/j.cyto.2022.155891 PMID: 35640416
- Chaweewannakorn, C.; Tsuchiya, M. Roles of IL-1α/β in regeneration of cardiotoxin-injured muscle and satellite cell function. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 315(1), R90-R103.
- Cohen, T.V.; Many, G.M.; Fleming, B.D.; Gnocchi, V.F.; Ghimbovschi, S.; Mosser, D.M.; Hoffman, E.P.; Partridge, T.A. Upregulated IL-1β in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages. Skelet. Muscle, 2015, 5(1), 24. doi: 10.1186/s13395-015-0048-4 PMID: 26251696
- Pedersen, B.; Febbraio, M. Músculos, ejercicio y obesidad: Músculo esquelético como órgano secretor. Nat. Rev. Endocrinol., 2012, 8, 457-465. doi: 10.1038/nrendo.2012.49 PMID: 22473333
- Garneau, L.; Aguer, C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. Diabetes Metab., 2019, 45(6), 505-516. doi: 10.1016/j.diabet.2019.02.006 PMID: 30844447
- Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance? Exerc. Immunol. Rev., 2006, 12, 6-33. PMID: 17201070
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev., 2008, 88(4), 1379-1406. doi: 10.1152/physrev.90100.2007 PMID: 18923185
- Forcina, L; Miano, C; Scicchitano, BM; Musarò, A Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells., 2019, 8(3), 232.
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J., 2013, 280(17), 4131-4148. doi: 10.1111/febs.12338 PMID: 23663276
- Grothe, C.; Heese, K.; Meisinger, C.; Wewetzer, K.; Kunz, D.; Cattini, P.; Otten, U. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: Relation to 18-kD fibroblast growth factor-2. Brain Res., 2000, 885(2), 172-181. doi: 10.1016/S0006-8993(00)02911-5 PMID: 11102571
- Bolin, L.M.; Verity, A.N.; Silver, J.E.; Shooter, E.M.; Abrams, J.S. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J. Neurochem., 1995, 64(2), 850-858. doi: 10.1046/j.1471-4159.1995.64020850.x PMID: 7830079
- Hoene, M.; Runge, H.; Häring, H.U.; Schleicher, E.D.; Weigert, C. Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: Role of the STAT3 pathway. Am. J. Physiol. Cell Physiol., 2013, 304(2), C128-C136. doi: 10.1152/ajpcell.00025.2012 PMID: 23114963
- Baeza-Raja, B.; Muñoz-Cánoves, P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: Role of interleukin-6. Mol. Biol. Cell, 2004, 15(4), 2013-2026. doi: 10.1091/mbc.e03-08-0585 PMID: 14767066
- Pelosi, M.; De Rossi, M.; Barberi, L.; Musarò, A. IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity. BioMed. Res. Int., 2014, 2014, 1-12. doi: 10.1155/2014/206026 PMID: 24967341
- Llovera, M.; García-Martínez, C.; López-Soriano, J.; Agell, N.; López-Soriano, F.J.; Garcia, I.; Argilés, J.M. Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett., 1998, 130(1-2), 19-27. doi: 10.1016/S0304-3835(98)00137-2 PMID: 9751252
- Xiang, Y.; Dai, J.; Xu, L.; Li, X.; Jiang, J.; Xu, J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci., 2021, 287, 120117. doi: 10.1016/j.lfs.2021.120117 PMID: 34740577
- Komiya, Y; Kobayashi, C; Uchida, N; Otsu, S; Tanio, T; Yokoyama, I Effect of dietary fish oil intake on ubiquitin ligase expression during muscle atrophy induced by sciatic nerve denervation in mice. Animal Sci. J, 2019, 90(8), 1018-1025. doi: 10.1111/asj.13224
- Ma, W.; Zhang, R.; Huang, Z.; Zhang, Q.; Xie, X.; Yang, X.; Zhang, Q.; Liu, H.; Ding, F.; Zhu, J.; Sun, H. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Ann. Transl. Med., 2019, 7(18), 440. doi: 10.21037/atm.2019.08.101 PMID: 31700876
- Langen, R.C.J.; Schols, A.M.W.J.; Kelders, M.C.J.M.; van der Velden, J.L.J.; Wouters, E.F.M.; Janssen-Heininger, Y.M.W. Tumor necrosis factor-α inhibits myogenesis through redox-dependent and -independent pathways. Am. J. Physiol. Cell Physiol., 2002, 283(3), C714-C721. doi: 10.1152/ajpcell.00418.2001 PMID: 12176728
- Warren, G.L.; Hulderman, T.; Jensen, N.; McKinstry, M.; Mishra, M.; Luster, M.I.; Simeonova, P.P. Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J., 2002, 16(12), 1630-1632. doi: 10.1096/fj.02-0187fje PMID: 12207010
- Chen, S.E.; Jin, B.; Li, Y.P. TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. Am. J. Physiol. Cell Physiol., 2007, 292(5), C1660-C1671. doi: 10.1152/ajpcell.00486.2006 PMID: 17151142
- Yeh, F.C.; Kao, C.F.; Kuo, P.H. Explore the features of brain-derived neurotrophic factor in mood disorders. PLoS One, 2015, 10(6), e0128605. doi: 10.1371/journal.pone.0128605 PMID: 26091093
- Clow, C.; Jasmin, B.J. Skeletal muscle-derived BDNF regulates satellite cell differentiation and muscle regeneration. Mol. Biol. Cell, 2010. doi: 10.1091/mbc.e10-02-0154
- Chevrel, G.; Hohlfeld, R.; Sendtner, M. The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve, 2006, 33(4), 462-476. doi: 10.1002/mus.20444 PMID: 16228973
- Mousavi, K.; Parry, D.J.; Jasmin, B.J. BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am. J. Physiol. Cell Physiol., 2004, 287(1), C22-C29. doi: 10.1152/ajpcell.00583.2003 PMID: 14973145
- Matthews, V.B.; Åström, M.B.; Chan, M.H.S.; Bruce, C.R.; Krabbe, K.S.; Prelovsek, O.; Åkerström, T.; Yfanti, C.; Broholm, C.; Mortensen, O.H.; Penkowa, M.; Hojman, P.; Zankari, A.; Watt, M.J.; Bruunsgaard, H.; Pedersen, B.K.; Febbraio, M.A. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 2009, 52(7), 1409-1418. doi: 10.1007/s00125-009-1364-1 PMID: 19387610
- Aby, K.; Antony, R.; Eichholz, M.; Srinivasan, R.; Li, Y. Enhanced pro-BDNF-p75NTR pathway activity in denervated skeletal muscle. Life Sci., 2021, 286, 120067. doi: 10.1016/j.lfs.2021.120067 PMID: 34678261
- Clow, C.; Jasmin, B.J. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol. Biol. Cell, 2010, 21(13), 2182-2190. doi: 10.1091/mbc.e10-02-0154 PMID: 20427568
- Akahori, H.; Karmali, V.; Polavarapu, R.; Lyle, A.N.; Weiss, D.; Shin, E.; Husain, A.; Naqvi, N.; Van Dam, R.; Habib, A.; Choi, C.U.; King, A.L.; Pachura, K.; Taylor, W.R.; Lefer, D.J.; Finn, A.V. CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. Nat. Commun., 2015, 6(1), 7792. doi: 10.1038/ncomms8792 PMID: 26242746
- Madrigal-Matute, J.; Fernandez-Laso, V.; Sastre, C.; Llamas-Granda, P.; Egido, J.; Martin-Ventura, J.L.; Zalba, G.; Blanco-Colio, L.M. TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc. Res., 2015, 108(1), 139-147. doi: 10.1093/cvr/cvv204 PMID: 26224570
- Enwere, E.K.; Holbrook, J.; Lejmi-Mrad, R.; Vineham, J.; Timusk, K.; Sivaraj, B.; Isaac, M.; Uehling, D.; Al-awar, R.; LaCasse, E.; Korneluk, R.G. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway. Sci. Signal., 2012, 5(246), ra75. doi: 10.1126/scisignal.2003086 PMID: 23074266
- Bowerman, M.; Salsac, C.; Coque, E.; Eiselt, E.; Deschaumes, R.G.; Brodovitch, A.; Burkly, L.C.; Scamps, F.; Raoul, C. Tweak regulates astrogliosis, microgliosis and skeletal muscle atrophy in a mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet., 2015, 24(12), 3440-3456. doi: 10.1093/hmg/ddv094 PMID: 25765661
- Paul, P.K.; Gupta, S.K.; Bhatnagar, S.; Panguluri, S.K.; Darnay, B.G.; Choi, Y.; Kumar, A. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol., 2010, 191(7), 1395-1411. doi: 10.1083/jcb.201006098 PMID: 21187332
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol., 2016, 8(5), a021873. doi: 10.1101/cshperspect.a021873 PMID: 27141051
- Lee, J.H.; Jun, H.S. Role of myokines in regulating skeletal muscle mass and function. Front. Physiol., 2019, 10, 42. doi: 10.3389/fphys.2019.00042 PMID: 30761018
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer, 2022, 21(1), 104. doi: 10.1186/s12943-022-01569-x PMID: 35461253
- Contreras, O.; Rebolledo, D.L.; Oyarzún, J.E.; Olguín, H.C.; Brandan, E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: Relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res., 2016, 364(3), 647-660. doi: 10.1007/s00441-015-2343-0 PMID: 26742767
- Ugarte, G.; Brandan, E. Transforming growth factor beta (TGF-beta) signaling is regulated by electrical activity in skeletal muscle cells. TGF-beta type I receptor is transcriptionally regulated by myotube excitability. J. Biol. Chem., 2006, 281(27), 18473-18481. doi: 10.1074/jbc.M600918200 PMID: 16682418
- Huang, Q.K.; Qiao, H.Y.; Fu, M.H.; Li, G.; Li, W.B.; Chen, Z.; Wei, J.; Liang, B.S. MiR-206 attenuates denervation-induced skeletal muscle atrophy in rats through regulation of satellite cell differentiation via TGF-β1, Smad3, and HDAC4 signaling. Med. Sci. Monit., 2016, 22, 1161-1170. doi: 10.12659/MSM.897909 PMID: 27054781
补充文件
