Soluble Factors Associated with Denervation-induced Skeletal Muscle Atrophy


如何引用文章

全文:

详细

Skeletal muscle tissue has the critical function of mechanical support protecting the body. In addition, its functions are strongly influenced by the balanced synthesis and degradation processes of structural and regulatory proteins. The inhibition of protein synthesis and/or the activation of catabolism generally determines a pathological state or condition called muscle atrophy, a reduction in muscle mass that results in partial or total loss of function. It has been established that many pathophysiological conditions can cause a decrease in muscle mass. Skeletal muscle innervation involves stable and functional neural interactions with muscles via neuromuscular junctions and is essential for maintaining normal muscle structure and function. Loss of motor innervation induces rapid skeletal muscle fiber degeneration with activation of atrophy-related signaling and subsequent disassembly of sarcomeres, altering normal muscle function. After denervation, an inflammation stage is characterized by the increased expression of pro-inflammatory cytokines that determine muscle atrophy. In this review, we highlighted the impact of some soluble factors on the development of muscle atrophy by denervation.

作者简介

Marianny Rodríguez

Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello

Email: info@benthamscience.net

Claudio Cabello-Verrugio

Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Yin, L.; Li, N.; Jia, W.; Wang, N.; Liang, M.; Yang, X.; Du, G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res., 2021, 172, 105807. doi: 10.1016/j.phrs.2021.105807 PMID: 34389456
  2. Chemello, F.; Bean, C.; Cancellara, P.; Laveder, P.; Reggiani, C.; Lanfranchi, G. Microgenomic analysis in skeletal muscle: Expression signatures of individual fast and slow myofibers. PLoS One, 2011, 6(2), e16807. doi: 10.1371/journal.pone.0016807 PMID: 21364935
  3. Marzuca-Nassr, G.N. , 2019.
  4. Sharlo, K.; Tyganov, S.A.; Tomilovskaya, E.; Popov, D.V.; Saveko, A.A.; Shenkman, B.S. Effects of various muscle disuse states and countermeasures on muscle molecular signaling. Int. J. Mol. Sci., 2021, 23(1), 468. doi: 10.3390/ijms23010468 PMID: 35008893
  5. Ramírez, Ramírez, C. Una visión desde la biología molecular a una deficiencia comúnmente encontrada en la práctica del fisioterapeuta: la atrofia muscular. Revista de la Universidad Industrial de Santander Salud., 2012, 44(3), 31-39.
  6. Iyer, S.R.; Shah, S.B.; Lovering, R.M. The neuromuscular junction: Roles in aging and neuromuscular disease. Int. J. Mol. Sci., 2021, 22(15), 8058. doi: 10.3390/ijms22158058 PMID: 34360831
  7. Kostrominova, T.Y. Skeletal Muscle Denervation: Past, Present and Future; MDPI, 2022, p. 7489.
  8. Burns, T.M.; Graham, C.D.; Rose, M.R.; Simmons, Z. Quality of life and measures of quality of life in patients with neuromuscular disorders. Muscle Nerve, 2012, 46(1), 9-25. doi: 10.1002/mus.23245 PMID: 22644588
  9. Ware, F., Jr; Bennett, A.L.; McIntyre, A.R. Membrane resting potential of denervated mammalian skeletal muscle measured in vivo. Am. J. Physiol., 1954, 177(1), 115-118. doi: 10.1152/ajplegacy.1954.177.1.115 PMID: 13148353
  10. Ehmsen, J.T.; Höke, A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp. Neurol., 2020, 331, 113379. doi: 10.1016/j.expneurol.2020.113379 PMID: 32533969
  11. Shen, Y.; Zhang, R.; Xu, L.; Wan, Q.; Zhu, J.; Gu, J.; Huang, Z.; Ma, W.; Shen, M.; Ding, F.; Sun, H. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front. Physiol., 2019, 10, 1298. doi: 10.3389/fphys.2019.01298 PMID: 31681010
  12. Tomasi, M.L.; Ramani, K.; Ryoo, M.; Cossu, C.; Floris, A.; Murray, B.J.; Iglesias-Ara, A.; Spissu, Y.; Mavila, N. SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease. FASEB J., 2018, 32(6), 3278-3288. doi: 10.1096/fj.201701124R PMID: 29401608
  13. Costamagna, D; Costelli, P; Sampaolesi, M; Penna, F, 2015, Role of inflammation in muscle homeostasis and myogenesis. Mediators Inflamm., 2015, 2015-805172. doi: 10.1155/2015/805172
  14. Wu, C.; Tang, L.; Ni, X.; Xu, T.; Fang, Q.; Xu, L.; Ma, W.; Yang, X.; Sun, H. Salidroside attenuates denervation-induced skeletal muscle atrophy through negative regulation of pro-inflammatory cytokine. Front. Physiol., 2019, 10, 665. doi: 10.3389/fphys.2019.00665 PMID: 31293430
  15. Yamauchi, Y.; Ferdousi, F.; Fukumitsu, S.; Isoda, H. Maslinic acid attenuates denervation-induced loss of skeletal muscle mass and strength. Nutrients, 2021, 13(9), 2950. doi: 10.3390/nu13092950 PMID: 34578826
  16. Chen, X.; Li, M.; Chen, B.; Wang, W.; Zhang, L.; Ji, Y.; Chen, Z.; Ni, X.; Shen, Y.; Sun, H. Transcriptome sequencing and analysis reveals the molecular mechanism of skeletal muscle atrophy induced by denervation. Ann. Transl. Med., 2021, 9(8), 697. doi: 10.21037/atm-21-1230 PMID: 33987395
  17. Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.M.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; Pan, Z.Q.; Valenzuela, D.M.; DeChiara, T.M.; Stitt, T.N.; Yancopoulos, G.D.; Glass, D.J. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 2001, 294(5547), 1704-1708. doi: 10.1126/science.1065874 PMID: 11679633
  18. Boutari, C.; Mantzoros, C.S. Decreasing lean body mass with age: Challenges and opportunities for novel therapies. Endocrinol. Metab. (Seoul), 2017, 32(4), 422-425. doi: 10.3803/EnM.2017.32.4.422 PMID: 29271616
  19. Raso, V.; Greve, JMDA.; Polito, MD. Pollock: Fisiologia clínica do exercício (2013) 2017. Available From: https://repositorio.usp.br/item/002683087
  20. Draznin, B. Molecular mechanisms of insulin resistance. Insulin resistance. Springer, 2020, 55-66.
  21. Cai, D.; Frantz, J.D.; Tawa, N.E., Jr; Melendez, P.A.; Oh, B.C.; Lidov, H.G.W.; Hasselgren, P.O.; Frontera, W.R.; Lee, J.; Glass, D.J.; Shoelson, S.E. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell, 2004, 119(2), 285-298. doi: 10.1016/j.cell.2004.09.027 PMID: 15479644
  22. Cadena, S.M.; Zhang, Y.; Fang, J.; Brachat, S.; Kuss, P.; Giorgetti, E.; Stodieck, L.S.; Kneissel, M.; Glass, D.J. Skeletal muscle in MuRF1 null mice is not spared in low-gravity conditions, indicating atrophy proceeds by unique mechanisms in space. Sci. Rep., 2019, 9(1), 9397. doi: 10.1038/s41598-019-45821-9 PMID: 31253821
  23. Paul, P.K.; Bhatnagar, S.; Mishra, V.; Srivastava, S.; Darnay, B.G.; Choi, Y.; Kumar, A. The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol. Cell. Biol., 2012, 32(7), 1248-1259. doi: 10.1128/MCB.06351-11 PMID: 22290431
  24. Beehler, B.C.; Sleph, P.G.; Benmassaoud, L.; Grover, G.J. Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation. Exp. Biol. Med. (Maywood), 2006, 231(3), 335-341. doi: 10.1177/153537020623100315 PMID: 16514182
  25. Kimura, N.; Kumamoto, T.; Oniki, T.; Nomura, M.; Nakamura, K.; Abe, Y.; Hazama, Y.; Ueyama, H. Role of ubiquitin-proteasome proteolysis in muscle fiber destruction in experimental chloroquine-induced myopathy. Muscle Nerve, 2009, 39(4), 521-528. doi: 10.1002/mus.21223 PMID: 19296457
  26. McGrath, M.J.; Eramo, M.J.; Gurung, R.; Sriratana, A.; Gehrig, S.M.; Lynch, G.S.; Lourdes, S.R.; Koentgen, F.; Feeney, S.J.; Lazarou, M.; McLean, C.A.; Mitchell, C.A. Defective lysosome reformation during autophagy causes skeletal muscle disease. J. Clin. Invest., 2021, 131(1), e135124. doi: 10.1172/JCI135124 PMID: 33119550
  27. Masiero, E.; Agatea, L.; Mammucari, C.; Blaauw, B.; Loro, E.; Komatsu, M.; Metzger, D.; Reggiani, C.; Schiaffino, S.; Sandri, M. Autophagy is required to maintain muscle mass. Cell Metab., 2009, 10(6), 507-515. doi: 10.1016/j.cmet.2009.10.008 PMID: 19945408
  28. Zhao, J.; Brault, J.J.; Schild, A.; Cao, P.; Sandri, M.; Schiaffino, S.; Lecker, S.H.; Goldberg, A.L. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab., 2007, 6(6), 472-483. doi: 10.1016/j.cmet.2007.11.004 PMID: 18054316
  29. Mammucari, C.; Milan, G.; Romanello, V.; Masiero, E.; Rudolf, R.; Del Piccolo, P.; Burden, S.J.; Di Lisi, R.; Sandri, C.; Zhao, J.; Goldberg, A.L.; Schiaffino, S.; Sandri, M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab., 2007, 6(6), 458-471. doi: 10.1016/j.cmet.2007.11.001 PMID: 18054315
  30. Ganassi, M.; Zammit, P.S. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies. Eur. J. Transl. Myol., 2022, 32(1), 10064. doi: 10.4081/ejtm.2022.10064 PMID: 35302338
  31. Seddon, H.J. A Classification of Nerve Injuries. BMJ, 1942, 2(4260), 237-239. doi: 10.1136/bmj.2.4260.237 PMID: 20784403
  32. Aydin, M.A.; Mackinnon, S.E.; Gu, X.M.; Kobayashi, J.; Kuzon, W.M., Jr. Force deficits in skeletal muscle after delayed reinnervation. Plast. Reconstr. Surg., 2004, 113(6), 1712-1718. doi: 10.1097/01.PRS.0000118049.93654.CA PMID: 15114133
  33. Wong, A.; Pomerantz, J.H. The role of muscle stem cells in regeneration and recovery after denervation: A review. Plast. Reconstr. Surg., 2019, 143(3), 779-788. doi: 10.1097/PRS.0000000000005370 PMID: 30817650
  34. Carraro, U.; Boncompagni, S.; Gobbo, V.; Rossini, K.; Zampieri, S.; Mosole, S.; Ravara, B.; Nori, A.; Stramare, R.; Ambrosio, F.; Piccione, F.; Masiero, S.; Vindigni, V.; Gargiulo, P.; Protasi, F.; Kern, H.; Pond, A.; Marcante, A. Persistent muscle fiber regeneration in long term denervation. Past, present, future. Eur. J. Transl. Myol., 2015, 25(2), 77. doi: 10.4081/bam.2015.2.77 PMID: 26913148
  35. Faroni, A.; Mobasseri, S.A.; Kingham, P.J.; Reid, A.J. Peripheral nerve regeneration: Experimental strategies and future perspectives. Adv. Drug Deliv. Rev., 2015, 82-83, 160-167. doi: 10.1016/j.addr.2014.11.010 PMID: 25446133
  36. Huang, X.; Jiang, J.; Xu, J. Denervation-related neuromuscular junction changes: From degeneration to regeneration. Front. Mol. Neurosci., 2022, 14, 810919. doi: 10.3389/fnmol.2021.810919 PMID: 35282655
  37. Lu, D.X.; Huang, S.K.; Carlson, B.M. Electron microscopic study of long-term denervated rat skeletal muscle. Anat. Rec., 1997, 248(3), 355-365. doi: 10.1002/(SICI)1097-0185(199707)248:33.0.CO;2-O PMID: 9214553
  38. Chang, H.; Hwang, S.; Lim, S.; Eo, S.; Minn, K.W.; Hong, K.Y. Long-term fate of denervated skeletal muscle after microvascular flap transfer. Ann. Plast. Surg., 2018, 80(6), 644-647. doi: 10.1097/SAP.0000000000001397 PMID: 29553977
  39. Rebolledo, DL; González, D; Faundez-Contreras, J; Contreras, O; Vio, CP; Murphy-Ullrich, JE Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol., 2019, 82, 20-37.
  40. Lieber, R.L.; Ward, S.R. Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am. J. Physiol. Cell Physiol., 2013, 305(3), C241-C252. doi: 10.1152/ajpcell.00173.2013 PMID: 23761627
  41. Das, D.K.; Graham, Z.A.; Cardozo, C.P. Myokines in skeletal muscle physiology and metabolism: Recent advances and future perspectives. Acta Physiol. (Oxf.), 2020, 228(2), e13367. doi: 10.1111/apha.13367 PMID: 31442362
  42. Sharma, M.; McFarlane, C.; Kambadur, R.; Kukreti, H.; Bonala, S.; Srinivasan, S. Myostatin: Expanding horizons. IUBMB Life, 2015, 67(8), 589-600. doi: 10.1002/iub.1392 PMID: 26305594
  43. Lee, S.J.; McPherron, A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 9306-9311. doi: 10.1073/pnas.151270098 PMID: 11459935
  44. Han, H.Q.; Zhou, X.; Mitch, W.E.; Goldberg, A.L. Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int. J. Biochem. Cell Biol., 2013, 45(10), 2333-2347. doi: 10.1016/j.biocel.2013.05.019 PMID: 23721881
  45. Sartori, R.; Milan, G.; Patron, M.; Mammucari, C.; Blaauw, B.; Abraham, R.; Sandri, M. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol., 2009, 296(6), C1248-C1257. doi: 10.1152/ajpcell.00104.2009 PMID: 19357234
  46. Lee, S.J.; Reed, L.A.; Davies, M.V.; Girgenrath, S.; Goad, M.E.P.; Tomkinson, K.N.; Wright, J.F.; Barker, C.; Ehrmantraut, G.; Holmstrom, J.; Trowell, B.; Gertz, B.; Jiang, M.S.; Sebald, S.M.; Matzuk, M.; Li, E.; Liang, L.; Quattlebaum, E.; Stotish, R.L.; Wolfman, N.M. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 18117-18122. doi: 10.1073/pnas.0505996102 PMID: 16330774
  47. De la Torre Álamo, M.M. El papel de los microRNAs en la regeneración muscular. 2021. Available From: https://crea.ujaen.es/handle/10953.1/14539
  48. Mikolajczyk, T.P.; Szczepaniak, P.; Vidler, F.; Maffia, P.; Graham, G.J.; Guzik, T.J. Role of inflammatory chemokines in hypertension. Pharmacol. Ther., 2021, 223, 107799. doi: 10.1016/j.pharmthera.2020.107799 PMID: 33359600
  49. Wagner, K.R.; McPherron, A.C.; Winik, N.; Lee, S.J. Loss of myostatin attenuates severity of muscular dystrophy inmdx mice. Ann. Neurol., 2002, 52(6), 832-836. doi: 10.1002/ana.10385 PMID: 12447939
  50. Crone, M.; Mah, J.K. Current and emerging therapies for duchenne muscular dystrophy. Curr. Treat. Options Neurol., 2018, 20(8), 31. doi: 10.1007/s11940-018-0513-6 PMID: 29936551
  51. Cannon, J.G.; Fielding, R.A.; Fiatarone, M.A.; Orencole, S.F.; Dinarello, C.A.; Evans, W.J. Increased interleukin 1 beta in human skeletal muscle after exercise. Am. J. Physiol., 1989, 257(2 Pt 2), R451-R455. PMID: 2669532
  52. Aneas, I.; Decker, D.C.; Howard, C.L.; Sobreira, D.R. Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat. Commun., 2021, 12(1), 6115. doi: 10.1038/s41467-021-26347-z
  53. You, Z.; Huang, X.; Xiang, Y.; Dai, J.; Xu, L.; Jiang, J.; Xu, J. Ablation of NLRP3 inflammasome attenuates muscle atrophy via inhibiting pyroptosis, proteolysis and apoptosis following denervation. Theranostics, 2023, 13(1), 374-390. doi: 10.7150/thno.74831 PMID: 36593964
  54. Yi, X.; Tao, J.; Qian, Y.; Feng, F.; Hu, X.; Xu, T.; Jin, H.; Ruan, H.; Zheng, H.F.; Tong, P. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Front. Pharmacol., 2022, 13, 1056460. doi: 10.3389/fphar.2022.1056460 PMID: 36618945
  55. Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine, 2022, 156, 155891. doi: 10.1016/j.cyto.2022.155891 PMID: 35640416
  56. Chaweewannakorn, C.; Tsuchiya, M. Roles of IL-1α/β in regeneration of cardiotoxin-injured muscle and satellite cell function. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 315(1), R90-R103.
  57. Cohen, T.V.; Many, G.M.; Fleming, B.D.; Gnocchi, V.F.; Ghimbovschi, S.; Mosser, D.M.; Hoffman, E.P.; Partridge, T.A. Upregulated IL-1β in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages. Skelet. Muscle, 2015, 5(1), 24. doi: 10.1186/s13395-015-0048-4 PMID: 26251696
  58. Pedersen, B.; Febbraio, M. Músculos, ejercicio y obesidad: Músculo esquelético como órgano secretor. Nat. Rev. Endocrinol., 2012, 8, 457-465. doi: 10.1038/nrendo.2012.49 PMID: 22473333
  59. Garneau, L.; Aguer, C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. Diabetes Metab., 2019, 45(6), 505-516. doi: 10.1016/j.diabet.2019.02.006 PMID: 30844447
  60. Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance? Exerc. Immunol. Rev., 2006, 12, 6-33. PMID: 17201070
  61. Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev., 2008, 88(4), 1379-1406. doi: 10.1152/physrev.90100.2007 PMID: 18923185
  62. Forcina, L; Miano, C; Scicchitano, BM; Musarò, A Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells., 2019, 8(3), 232.
  63. Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J., 2013, 280(17), 4131-4148. doi: 10.1111/febs.12338 PMID: 23663276
  64. Grothe, C.; Heese, K.; Meisinger, C.; Wewetzer, K.; Kunz, D.; Cattini, P.; Otten, U. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: Relation to 18-kD fibroblast growth factor-2. Brain Res., 2000, 885(2), 172-181. doi: 10.1016/S0006-8993(00)02911-5 PMID: 11102571
  65. Bolin, L.M.; Verity, A.N.; Silver, J.E.; Shooter, E.M.; Abrams, J.S. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J. Neurochem., 1995, 64(2), 850-858. doi: 10.1046/j.1471-4159.1995.64020850.x PMID: 7830079
  66. Hoene, M.; Runge, H.; Häring, H.U.; Schleicher, E.D.; Weigert, C. Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: Role of the STAT3 pathway. Am. J. Physiol. Cell Physiol., 2013, 304(2), C128-C136. doi: 10.1152/ajpcell.00025.2012 PMID: 23114963
  67. Baeza-Raja, B.; Muñoz-Cánoves, P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: Role of interleukin-6. Mol. Biol. Cell, 2004, 15(4), 2013-2026. doi: 10.1091/mbc.e03-08-0585 PMID: 14767066
  68. Pelosi, M.; De Rossi, M.; Barberi, L.; Musarò, A. IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity. BioMed. Res. Int., 2014, 2014, 1-12. doi: 10.1155/2014/206026 PMID: 24967341
  69. Llovera, M.; García-Martínez, C.; López-Soriano, J.; Agell, N.; López-Soriano, F.J.; Garcia, I.; Argilés, J.M. Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett., 1998, 130(1-2), 19-27. doi: 10.1016/S0304-3835(98)00137-2 PMID: 9751252
  70. Xiang, Y.; Dai, J.; Xu, L.; Li, X.; Jiang, J.; Xu, J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci., 2021, 287, 120117. doi: 10.1016/j.lfs.2021.120117 PMID: 34740577
  71. Komiya, Y; Kobayashi, C; Uchida, N; Otsu, S; Tanio, T; Yokoyama, I Effect of dietary fish oil intake on ubiquitin ligase expression during muscle atrophy induced by sciatic nerve denervation in mice. Animal Sci. J, 2019, 90(8), 1018-1025. doi: 10.1111/asj.13224
  72. Ma, W.; Zhang, R.; Huang, Z.; Zhang, Q.; Xie, X.; Yang, X.; Zhang, Q.; Liu, H.; Ding, F.; Zhu, J.; Sun, H. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Ann. Transl. Med., 2019, 7(18), 440. doi: 10.21037/atm.2019.08.101 PMID: 31700876
  73. Langen, R.C.J.; Schols, A.M.W.J.; Kelders, M.C.J.M.; van der Velden, J.L.J.; Wouters, E.F.M.; Janssen-Heininger, Y.M.W. Tumor necrosis factor-α inhibits myogenesis through redox-dependent and -independent pathways. Am. J. Physiol. Cell Physiol., 2002, 283(3), C714-C721. doi: 10.1152/ajpcell.00418.2001 PMID: 12176728
  74. Warren, G.L.; Hulderman, T.; Jensen, N.; McKinstry, M.; Mishra, M.; Luster, M.I.; Simeonova, P.P. Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J., 2002, 16(12), 1630-1632. doi: 10.1096/fj.02-0187fje PMID: 12207010
  75. Chen, S.E.; Jin, B.; Li, Y.P. TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. Am. J. Physiol. Cell Physiol., 2007, 292(5), C1660-C1671. doi: 10.1152/ajpcell.00486.2006 PMID: 17151142
  76. Yeh, F.C.; Kao, C.F.; Kuo, P.H. Explore the features of brain-derived neurotrophic factor in mood disorders. PLoS One, 2015, 10(6), e0128605. doi: 10.1371/journal.pone.0128605 PMID: 26091093
  77. Clow, C.; Jasmin, B.J. Skeletal muscle-derived BDNF regulates satellite cell differentiation and muscle regeneration. Mol. Biol. Cell, 2010. doi: 10.1091/mbc.e10-02-0154
  78. Chevrel, G.; Hohlfeld, R.; Sendtner, M. The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve, 2006, 33(4), 462-476. doi: 10.1002/mus.20444 PMID: 16228973
  79. Mousavi, K.; Parry, D.J.; Jasmin, B.J. BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am. J. Physiol. Cell Physiol., 2004, 287(1), C22-C29. doi: 10.1152/ajpcell.00583.2003 PMID: 14973145
  80. Matthews, V.B.; Åström, M.B.; Chan, M.H.S.; Bruce, C.R.; Krabbe, K.S.; Prelovsek, O.; Åkerström, T.; Yfanti, C.; Broholm, C.; Mortensen, O.H.; Penkowa, M.; Hojman, P.; Zankari, A.; Watt, M.J.; Bruunsgaard, H.; Pedersen, B.K.; Febbraio, M.A. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 2009, 52(7), 1409-1418. doi: 10.1007/s00125-009-1364-1 PMID: 19387610
  81. Aby, K.; Antony, R.; Eichholz, M.; Srinivasan, R.; Li, Y. Enhanced pro-BDNF-p75NTR pathway activity in denervated skeletal muscle. Life Sci., 2021, 286, 120067. doi: 10.1016/j.lfs.2021.120067 PMID: 34678261
  82. Clow, C.; Jasmin, B.J. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol. Biol. Cell, 2010, 21(13), 2182-2190. doi: 10.1091/mbc.e10-02-0154 PMID: 20427568
  83. Akahori, H.; Karmali, V.; Polavarapu, R.; Lyle, A.N.; Weiss, D.; Shin, E.; Husain, A.; Naqvi, N.; Van Dam, R.; Habib, A.; Choi, C.U.; King, A.L.; Pachura, K.; Taylor, W.R.; Lefer, D.J.; Finn, A.V. CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. Nat. Commun., 2015, 6(1), 7792. doi: 10.1038/ncomms8792 PMID: 26242746
  84. Madrigal-Matute, J.; Fernandez-Laso, V.; Sastre, C.; Llamas-Granda, P.; Egido, J.; Martin-Ventura, J.L.; Zalba, G.; Blanco-Colio, L.M. TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc. Res., 2015, 108(1), 139-147. doi: 10.1093/cvr/cvv204 PMID: 26224570
  85. Enwere, E.K.; Holbrook, J.; Lejmi-Mrad, R.; Vineham, J.; Timusk, K.; Sivaraj, B.; Isaac, M.; Uehling, D.; Al-awar, R.; LaCasse, E.; Korneluk, R.G. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway. Sci. Signal., 2012, 5(246), ra75. doi: 10.1126/scisignal.2003086 PMID: 23074266
  86. Bowerman, M.; Salsac, C.; Coque, E.; Eiselt, E.; Deschaumes, R.G.; Brodovitch, A.; Burkly, L.C.; Scamps, F.; Raoul, C. Tweak regulates astrogliosis, microgliosis and skeletal muscle atrophy in a mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet., 2015, 24(12), 3440-3456. doi: 10.1093/hmg/ddv094 PMID: 25765661
  87. Paul, P.K.; Gupta, S.K.; Bhatnagar, S.; Panguluri, S.K.; Darnay, B.G.; Choi, Y.; Kumar, A. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol., 2010, 191(7), 1395-1411. doi: 10.1083/jcb.201006098 PMID: 21187332
  88. Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol., 2016, 8(5), a021873. doi: 10.1101/cshperspect.a021873 PMID: 27141051
  89. Lee, J.H.; Jun, H.S. Role of myokines in regulating skeletal muscle mass and function. Front. Physiol., 2019, 10, 42. doi: 10.3389/fphys.2019.00042 PMID: 30761018
  90. Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer, 2022, 21(1), 104. doi: 10.1186/s12943-022-01569-x PMID: 35461253
  91. Contreras, O.; Rebolledo, D.L.; Oyarzún, J.E.; Olguín, H.C.; Brandan, E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: Relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res., 2016, 364(3), 647-660. doi: 10.1007/s00441-015-2343-0 PMID: 26742767
  92. Ugarte, G.; Brandan, E. Transforming growth factor beta (TGF-beta) signaling is regulated by electrical activity in skeletal muscle cells. TGF-beta type I receptor is transcriptionally regulated by myotube excitability. J. Biol. Chem., 2006, 281(27), 18473-18481. doi: 10.1074/jbc.M600918200 PMID: 16682418
  93. Huang, Q.K.; Qiao, H.Y.; Fu, M.H.; Li, G.; Li, W.B.; Chen, Z.; Wei, J.; Liang, B.S. MiR-206 attenuates denervation-induced skeletal muscle atrophy in rats through regulation of satellite cell differentiation via TGF-β1, Smad3, and HDAC4 signaling. Med. Sci. Monit., 2016, 22, 1161-1170. doi: 10.12659/MSM.897909 PMID: 27054781

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024